Before beginning the experiment observe and record the physical appearance of all the chemicals used in the experiment. First write a balanced chemical equation that has Zinc iodide as product when Barium iodide and zinc sulfate are used. To begin today’s lab, weigh a small test tube on a scale that goes to the hundredths place. Using a clean spatula add .45 g + .03 grams of zinc sulfate heptahydrate (.25 g + .03 grams if zinc sulfate is used) into the small test tube. Dissolve the sample in 2 mL of deionized water. Make sure al of the powder is mixed with the water, stopper the test tube and shake for about 1 to 1 ½ minutes to dissolve. Let the test tube stand and weigh another small test tube. Depending on what is being used, .61 g +.03
The purpose for this experiment was to determine why it was not possible to obtain a high percent yield when Calcium Nitrate Ca(〖NO_3)〗_2 with a concentration of 0.101 M was mixed with Potassium Iodate KIO_3 with concentration of 0.100 M at varying volumes yielding Calcium Iodate precipitate and Potassium Nitrate. Filtration was used to filter the precipitates of the solutions. The percent yield for solution 1 was 87.7%, and the percent yield for solution 2 was 70.8%. It was not possible to obtain a high percent yield because Calcium Iodate is not completely soluble and some of the precipitates might have been rinsed back to the filtrates when ethanol was used to remove water molecules in the precipitate.
The mixture was poured through a weight filter paper and Sucrose washed with a 5ml of dichloromethane. The resulting solid was left in a breaker to dry for one week, to be measured. Left it in the drawer to dry out for a week and weighted it to find the sucrose amount recovered amount.
Compress the safety bulb, hold it firmly against the end of the pipette. Then release the bulb and allow it to draw the liquid into the pipette.
Each subsequent trial will use one gram more. 2.Put baking soda into reaction vessel. 3.Measure 40 mL vinegar. 4.Completely fill 1000 mL graduated cylinder with water.
3.) Divide your 30g of white substance into the 4 test tubes evenly. You should put 7.5g into each test tube along with the water.
Benzyl bromide, an unknown nucleophile and sodium hydroxide was synthesized to form a benzyl ether product. This product was purified and analyzed to find the unknown in the compound.
The procedure of the lab on day one was to get a ring stand and clamp, then put the substance in the test tube. Then put the test tube in the clamp and then get a Bunsen burner. After that put the Bunsen burner underneath the test tube to heat it. The procedure of the lab for day two was almost exactly the same, except the substances that were used were different. The
For this experiment, you will add the measured amount of the first sample to the measured amount of the second sample into its respectively labeled test tube then observe if a reaction occurs. In your Data Table, record the samples added to each test tube, describe the reaction observed, if any, and whether or not a chemical reaction took place.
2. Put the test tube inside a beaker for support. Place the beaker on a balance pan. Set the readings on the balance to zero. Then measure 14.0g of KNO3 into the test tube.
2. In the large beaker, put water and boil it completely. After that, remove the beaker from heat. 3. Sample tubes (A-D) should be labeled and capped tightly.
Ćurić, M., Janc, D., Vučković V. (2007, February 1). Cloud seeding impact on precipitation as revealed by cloud-resolving mesoscale model. Retrieved from http://link.springer.com/article/10.1007/s00703-006-0202-y#page-1
Part D- Part D started by mixing in a clean vial, twenty drops of 0.1M zinc sulfate with twenty drops of 6M ammonia. A half-cell was prepared from the solution, a dropper, a wad of cotton, and zinc strip.
== § Test tubes X 11 § 0.10 molar dm -3 Copper (II) Sulphate solution § distilled water § egg albumen from 3 eggs. § Syringe X 12 § colorimeter § tripod § 100ml beaker § Bunsen burner § test tube holder § safety glasses § gloves § test tube pen § test tube method = == = =
Weigh out two 0.100 g. samples of the product and put each into a test
The ZnO crystallizes in a few forms which are wurtzite, zinc blende and rocksalt as shown in Figure 2.4. The wurtzite structure is the most thermodynamically stable phase under ambient temperature and also very common. The zinc blende ZnO geometry can be stabilized only by growth on cubic lattice substrates and the rocksalt structure (NaCl structure) can be obtained at relatively high pressures using ultrasonic wave velocity measurements of up to 10 GPa. (Morkoc).