1. Cells establish Gibbs-Donna equilibrium instead of chemical equilibrium due to the repulsion of negative charge inside cells. Chemical equilibrium is established when the rate of the forward reaction is equal to the rate of the reverse reaction. In a chemical equilibrium, the concentrations of reactants and products do not change with time. Alternatively, Gibbs-Donna equilibrium is established when the repulsion due to the negatively charged anions creates electrical difference across the cell membrane. Large non-diffusible anions in a cell cannot cross the cell membrane, making the interior of a cell membrane negatively charged and the exterior of a cell membrane positively charge. This unequal distribution of charge is responsible for
I decide to do my cell analogy in the grocery store, because it has so many things in it. I can see how all the items in the grocery store work together to be able to get things done like it the cell, and every job is important.
In life, it is critical to understand what substances can permeate the cell membrane. This is important because the substances that are able to permeate the cell membrane can be necessary for the cell to function. Likewise, it is important to have a semi-permeable membrane in the cell due to the fact that it can help guard against harmful items that want to enter the cell. In addition, it is critical to understand how water moves through the cell through osmosis because if solute concentration is unregulated, net osmosis can occur outside or inside the cell, causing issues such as plasmolysis and cytolysis. The plasma membrane of a cell can be modeled various ways, but dialysis tubing is especially helpful to model what substances will diffuse or be transported out of a cell membrane. The experiment seeks to expose what substances would be permeable to the cell membrane through the use of dialysis tubing, starch, glucose, salt, and various solute indicators. However, before analyzing which of the solutes (starch, glucose, and salt) is likely to pass through the membrane, it is critical to understand how the dialysis tubing compares to the cell membrane.
G-protein-linked receptors are protein receptors, located in the plasma membrane of a cell, that work with G-proteins to activate a cell-signaling pathway. These receptors are structured similarly in most organisms, with seven α helices and specific loops for binding sites for signal molecules and G-proteins. When a signal molecule from the extracellular fluid attaches to the signal-binding site it activates the G-protein-linked receptor by changing its shape. When this happens, the G-protein, loosely attached to the cytoplasmic side of the cellular membrane, attaches to its binding side on the receptor protein. The inactive G-protein becomes activated when GDP is displaced by GTP, a molecule similar to ATP. When the signal molecule is released, the G-protein diffuses along the cell membrane and attaches to an inactive enzyme. This newly activated enzyme triggers the cellular response. When the protein detaches itself from the enzyme, it releases a phosphate group turning GTP back into GDP, making the G-protein inactive once again.
The water concentration is now even on the inside and out. This process is called osmosis. Part B: Aim: To investigate the action of a differentially permeable membrane. Method: See attached.
There are a series of nodes along the axon where there is a high concentration of sodium (Na+) and K+ channels. There is a high concentration of Na+ outside the cell and a high concentration of K+ inside the cell. As the nodes sen...
If the concentration of one side of the membrane is greater than the molecules will travel from the higher to lower concentration. Eventually there will be a dynamic equilibrium and there will be no net movement of molecules from one side to the other. Osmosis is the diffusion of water. Like diffusion, the water moves from a region of higher water potential to a region of lower water potential.
The primary mechanism of homeostasis is negative feedback ( the response of a system that acts to maintain equilibrium by compensating for any changes made to the system) , in which stimulus resulting from a change in the external or internal e...
Activity 3: Investigating Osmosis and Diffusion Through Nonliving Membranes. In this activity, through the use of dialysis sacs and varying concentrations of solutions, the movement of water and solutes will be observed through a semipermeable membrane. The gradients at which the solutes NaCl and glucose diffuse is unproportional to any other molecule, therefore they will proceed down their own gradients. However, the same is not true for water, whose concentration gradient is affected by solute ...
The direction of osmosis depends on the relative concentration of the solutes on the two sides. In osmosis, water can travel in three different ways. If the molecules outside the cell are lower than the concentration in the cytosol, the solution is said to be hypotonic to the cytosol, in this process, water diffuses into the cell until equilibrium is established. If the molecules outside the cell are higher than the concentration in the cytosol, the solution is said to be hypertonic to the cytosol, in this process, water diffuses out of the cell until equilibrium exists. If the molecules outside and inside the cell are equal, the solution is said to be isotonic to the cytosol, in this process, water diffuses into and out of the cell at equal rates, causing no net movement of water. In osmosis the cell is selectively permeable, meaning that it only allows certain substances to be transferred into and out of the cell. In osmosis, the proteins only on the surface are called peripheral proteins, which form carbohydrate chains whose purpose is used like antennae for communication. Embedded in the peripheral proteins are integral
When a positive and a negative electrode are placed in a solution containing ions, and an electric potential is applied to the electrodes, the positively charged ions move towards the negative electrode, and the negatively charged ions to the positive electrode. As a result, an electric current flows between the electrodes. The strength of the current depends on the electric potential between the electrodes and the concentration of ions in the solution. Ionization is the formation of electrically charges atoms or molecules.
On a cellular level, Mrs. Jones’ cells are dehydrated due to osmotic pressure changes related to her high blood glucose. Cells dehydrate when poor cellular diffusion of glucose causes increased concentrations of glucose outside of the cell and lesser concentrations inside of the cell. Diffusion refers to the movement of particles from one gradient to another. In simple diffusion there is a stabilization of unequal of particles on either side of a permeable membrane through which the particles move freely to equalize the particles on both sides. The more complex facilitated diffusion is a passive transport of large particles from a high concentration of particles to a lower concentration of particles with the aid of a transport protein (Porth, 2011). The cellular membranes in our bodies are semipermeable allowing for smaller molecules to flow freely from the intracellular to extracellular space. The glucose molecule, however; is too large to diffuse through the cellul...
The electrolyte (solution) contains negative and positive ions. For electrolysis to work there must be the same amount of positive ions to negative ions so that the solution is electrically balanced. A solution of metal compounds can only conduct electricity if it is balanced. The negative ions are attracted to the anode (+ve electrode) and the positive ions (protons) are attracted to the cathode (-ve electrode). The electrolyte effect the amount of atoms attracted.
When a neuron receives an excitatory stimulus, the membrane becomes more permeable to sodium. As a result, Na+ diffuses down its concentration gradient into the cell. This causes the inside of the cell to become more positive and the exterior to become more negative; an event called depolarization. If the stimulus is strong enough to depolarize the axon to threshold, an action potential will be generated. As the membrane permeability to Na+ decreases (Na+ specific channel closes), the permeability to K+ increases (K+ channels open) and K+ diffuses outside of the cell. This is termed repolarization. Repolarization returns the membrane to its more negative interior, more positive exterior state. This short-term reversal of the neurons membrane
The Cell Theory states that all organisms are composed of similar units of organization, called cells. The concept was formally articulated in 1839 by Schleiden and Schwann and has remained as the foundation of modern biology.
What is the cell cycle? It’s the way we reproduce. A series of events lead up from the beginning that which gives them life to the splitting of cells, The separate steps make up this very important process. Without the division of cells, we simply would not be here today.