Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Cellular division process
A Essay About Mitosis
A Essay About Mitosis
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Cellular division process
The Process of Mitosis
Mitosis is the term used to describe cell division for replication. The product at the end of mitosis is two daughter cells both genetically identical to the original (parent) cell. This process (mitosis) is used for growth and repair within an organism (and also for asexual reproduction).
There are five main stages to mitosis, called Interphase, Prophase, Metaphase,
Anaphase and Telophase. Although the process has been divided up into these stages the process of mitosis is actually continuous.
Interphase --------------------------------------- In this, the first stage the cell will look just like any other 'normal' cell although this is far from the case because very much is actually happening. All cell organelles are being produced in quantity and the chromosomes - DNA molecules are being copied exactly. The two identical copies of DNA are called a "pair of chromatids" and they are linked together by an item called a "chromomere". During this stage a store of ATP is also built up.
[Best put a labelled diagram of a cell during Interphase here.]
Prophase --------------------------------------- In this second stage changes to the cell become visible. The chromosomes condense, coiling up to about 5% of their original length, now clearly visible when a stain is added. The centrioles move to the opposite poles of the cell and small microtubules around the centrioles become visible (called "Asters"). The nuclear membranes...
Question 1: Briefly describe, in 500 words or less, the normal structure and function of your chosen cell type. In your answer, discuss specific features in your chosen cell type, including cell organelles.
Trisomy 13 or Patau Syndrome” Trisomy 13 is a genetic disorder found in babies. It is also called Patau syndrome in honor of the physician who first described it, Krause Palau. Trisomy 13 is a genetic disorder in which there is three copies of chromosomes on Chromosome 13. Patau first described the syndrome and its involvement with trisomy in 1960. It is sometimes called Bartholin-Patau syndrome, named in part for Thomas Bartholin, a French physician who described an infant with the syndrome in 1656.
Compare and Contrast Mitosis and Meiosis. Meiosis and mitosis describes the process by which cells divide. either by asexual or sexual reproduction to produce a new organism. Meiosis is a form of cell division that produces gametes in humans.
Meiosis is specialized cellular division of sex cells. This type of cellular division occurs in single and multi-cellular organisms that undergo sexual reproduction. This process is split into two cycles: Meiosis I and Meiosis II. Prior to the start of meiosis, interphase occurs. Although interphase is not a stage of meiosis it is a vital preparatory step. It allows cellular growth, DNA replication and prepares for cellular division. Each cycle of meiosis is broken down into four stages for a total of eight stages. Meiosis I is composed of prophase I, metaphase I, anaphase I, and telophase I. Meiosis II is a repeat of each phase of meiosis I. Once meiosis is complete, the result will be four haploid daughter cells meaning that each daughter
Sexual reproduction is that the union of male and feminine gametes to create a fertilised egg or zygote. The ensuing offspring inherit one-half their traits from every parent. Consequently, they 're not genetically similar to either parent or siblings, except within the case of identical twins. As theorised by Mendel, adults are diploid, meaning as 2N, having 2 alleles offered to code for one attribute. The gametes should be haploid, signified by N, containing just one allele in order that once 2 haploid gametes mix, they manufacture a traditional diploid individual. The method where haploid sex cells are created from diploid parents is known as meiosis, and it happens solely within the reproductive organs.
This article relates to this course about Biology within the cells. This article relates to
Precise chromosomal DNA replication during S phase of the cell cycle is a crucial factor in the proper maintenance of the genome from generation to generation. The current “once-per-cell-cycle” model of eukaryotic chromosome duplication describes a highly coordinated process by which temporally regulated replicon clusters are sequentially activated and subsequently united to form two semi-conserved copies of the genome. Replicon clusters, or replication domains, are comprised of individual replication units that are synchronously activated at predetermined points during S phase. Bi-directional replication within each replicon is initiated at periodic AT-rich origins along each chromosome. Origins are not characterized by any specific nucleotide sequence, but rather the spatial arrangement of origin replication complexes (ORCs). Given the duration of the S phase and replication fork rate, adjacent origins must be appropriately spaced to ensure the complete replication of each replicon. Chromatin arrangement by the nuclear matrix may be the underpinning factor responsible for ORC positioning. The six subunit ORC binds to origins of replication in an ATP-dependent manner during late telophase and early G1. In yeast, each replication domain simply contains a single ORC binding site. However, more complex origins are characterized by an initiation zone where DNA synthesis may begin at numerous locations. A single round of DNA synthesis at each activated origin is achieved by “lic...
there would be no flow of water into or out of the cell so the cell
Meiosis is a specialized form of nuclear division in which there two successive nuclear divisions (meiosis I and II) without any chromosome replication between them. Each division can be divided into 4 phases similar to those of mitosis (pro-, meta-, ana- and telophase). Meiosis occurs during the formation of gametes in animals.
The process of cell division plays a very important role in the everyday life of human beings as well as all living organisms. If we did not have cell division, all living organisms would cease to reproduce and eventually perish because of it. Within cell division, there are some key roles that are known as nuclear division and cytokinesis. There are two types within nuclear division. Those two types being mitosis and meiosis. Mitosis and meiosis play a very important role in the everyday life as well. Mitosis is the asexual reproduction in which two cells divide in two in order to make duplicate cells. The cells have an equal number of chromosomes which will result in diploid cells. Mitosis is genetically identical and occurs in all living
So how big are cells? Most human cells are about ten microns in diameter. This is about o...
The Animal Cell is a little bit different than the Plant Cell for only a couple of reasons. One is how the Plant Cell has a cell wall and the Animal Cell doesn’t. The cell wall protects and gives structure to the cell. Then there is the Nucleus, which serves as a control center for the cell. Inside the Nucleus there are one or more Nucleoli. They are dense, granular bodies that disappear at the beginning of cell division and reappear at the end. Then you have the Cytoplasm. This is the watery material lying within the cell between the cell membrane and the nucleus. The Cytoplasm also contains organelles, which have specific functions in the cell metabolism. Then there are the Golgi Bodies, which serve as processing, packaging, and storage for the cell. These organelles package and ship things out. Another parts of the cell, a very important one in fact, are the Lysosomes. These organelles are used to break things down and contain enzymes.
In this cell though, the nucleus was not present. The plant cells and animal cells were very different. In the plant cells there was motion of cell parts but in the animal cells there was no motion. Also, the nucleus and chloroplast of the plant cell were towards the outside of the cell because the chloroplast can receive sunlight better on the outside of the cell than on the inside. In the animal cells though, the nucleus and cell organelles, were towards the middle of the cell.
cell we use today. The positive pole is a rode of carbon embedded in a
This report provides an insight into the differences in the structure of cells and the way that they carry out their internal mechanisms. Cells form the basis of all living things and they are the smallest single unit of life. Cell biology is the study of cells and how they function, from the subcellular processes which keep them functioning, to the