The Adaptations of Green Plants for
Photosynthesis
Photosynthesis is the metabolic pathway by which the inorganic
compounds water and carbon dioxide are converted into carbohydrates
using light energy, which is absorbed by chlorophyll. Plants need to
be adapted so that maximum light energy is absorbed and therefore
maximum photosynthesis occurs. Plants have adapted in order to be able
to survive in many different climates such as high temperatures and
humid conditions.
Leaves play an important part in photosynthesis, as they are the first
part of the plant, which is exposed to the light energy from the sun.
They have a large surface area in order to absorb maximum light
energy. The waxy cuticle and the upper epidermis are both transparent
so that light can pass through the leaf into the other cells, which
are needed for photosynthesis. The palisade cells in the leaf are
elongated so that as much light is absorbed as possible. Palisade
cells have thin cell walls so that the light has a short distance to
travel before it reaches the chloroplasts. They are also tightly
packed together to ensure that no light energy is lost. The palisade
cells and the upper epidermis contain high number of chloroplasts to
ensure that maximum light has been reabsorbed. These chloroplasts are
mobile within the cytoplasm this helps to ensure that maximum light is
absorbed. The leaf grows at right angles to ensure the largest surface
area is exposed to the sunlight.
Another adaptation of the plant known as phototropism means that the
plant will grow towards the light. Leaves are broad and flat to
provide a large surface area and to provide a short path for the light
to travel. It also means that there is a short diffusion path for the
exchange of gases. The vascular tissues found in leaves contain the
xylem vessel, which transports the water required for photosynthesis.
The phloem removes the products of photosynthesis. Plants and trees
both arrange their leaves in a leaf mosaic to ensure that light
reaches every leaf, which maximises the amount of light energy,
Investigating the Effect of Light Intensity on Photosynthesis in a Pondweed Aim: To investigate how the rate of photosynthesis changes at different light intensities, with a pondweed. Prediction: I predict that the oxygen bubbles will decrease when the lamp is further away from the measuring cylinder, because light intensity is a factor of photosynthesis. The plant may stop photosynthesising when the pondweed is at the furthest distance from the lamp (8cm). Without light, the plant will stop the photosynthesising process, because, light is a limited factor. However once a particular light intensity is reached the rate of photosynthesis stays constant, even if the light intensity is the greatest.
They are used to produce glucose which is used as plant food and growing materials (e.g. cellulose).A leaf which is exposed to plenty of light will have sufficient amounts of food and will not need an excessive amount of chlorophyll. This enables the leaf to have a small surface area. It is also necessary for leaves in areas of high light intensity, and thus high temperature, to have small leaves to reduce the amount of transpiration. The heat will cause water to evaporate a lot faster. Leaves in shaded areas will need a large surface area full of chlorophyll to collect as much sun light as possible; essential for survival.
= == Carbon dioxide + water Þ glucose + oxygen Green plants need sunlight. They use the light energy to make a sugar called glucose. Glucose can be turned into another type of sugar called sucrose and carried to other parts of the plant in phloem vessels. Glucose can also be turned into starch and stored.
An Analysis and Evaluation of Data from Photosynthesis Experiments Graph analysis This is my analysis for the investigation in to the affect of light intensity on the rate of photosynthesis to the Canadian pondweed, elodea. In the results the pattern is that when the light intensity is higher the readings are generally higher. On the graph the less the light intensity the lower the gradient of the curve. the equation for the photosynthesis process is; CO2 + 2H2O + Light Energy = =
product and glucose levels. Plants trap the energy in sunlight using chlorophyll, a light trapping pigment found in leaf plant cells. It then uses carbon dioxide which enters the plant through small holes found. on the underside of the leaf called stoma and water which enters the
Ghosh, Paramita. "Importance of Photosynthesis." Buzzle. Buzzle.com, 14 Apr. 2008. Web. 19 May 2014. .
[IMAGE]Carbon dioxide + water Light Energy glucose + oxygen Chlorophyll [IMAGE]6CO2 + 6H20 Light Energy C6 H12 O6 + 6O 2 Chlorophyll Photosynthesis occurs in the leaves of the plant in the palisade layer. Chlorophyll in the cells in the palisade layer absorb light for photosynthesis. The plant releases the oxygen created in photosynthesis back into the air but it uses or stores the glucose for energy, respiration, growth and repair. The leaves and plants are also specially adapted for photosynthesis in their structure and cell alignment. Preliminary Experiment Apparatus * Piece of Elodea Canadensis * Bulb * Voltmeter * Test tube * Beaker * Box *
How Light Affects the Stomatal Opening in a Leaf Abstract = == == ==
Photosynthesis in simpler turns is the ability of a live plant to carry on its chemical process by the use of light energy. Photosynthesis can not take place when there is absolutely no light, instead it stores the light it captures during the day, and uses it when needed. Photosynthesis can take place in land plants and aquarian plants such as algae. There are many factors that influence the ability of a plant to go through photosynthesis, such as light, the color of light and amount of water and or light.
Photosynthesis is, “the process by which plants convert light energy from the Sun into chemical energy in the form of carbohydrates” thus producing, “food for all living organisms, directly or indirectly” (Zheng). Photosynthesis has been examined in thousands of different ways. Many of these experiments include studying the rate of photosynthesis and pigment accumulation by obtaining plants and then stressing their light and nutrient intake (Okunlola and Adekunle). Photosynthetic pigments reflect and absorb different wavelengths of visible light based off their polarity. In this experiment, we studied photosynthetic pigments, first, by determining polarity and then, by measuring the amount of light of a given wavelength that a pigment absorbs. We used two methods in this experiment, chromatography and spectrophotometry. Chromatography “is a method used to separate mixtures of substances into their components” (lab book) and spectrophotometry is the use of a spectrophotometer to measure transmittance of light through a liquid. We used our knowledge of polarity to predict that since the least polar pigments move the most, pigment 1 is chlorophyll b, pigment 2 is chlorophyll a, pigment 3 is an anthocyanin, pigment 4 is a xanthophyll, and since most polar pigments move the least, pigment 5 is
Photosynthesis will occur at a faster rate when the plant is exposed to the sun, than when it is not exposed to sunlight.
Photosynthesis is a process in which plants and other organisms convert the light energy from the sun or any other source into chemical energy that can be released to fuel an organism’s activities. During this reaction, carbon dioxide and water are converted into glucose and oxygen. This process takes place in leaf cells which contain chloroplasts and the reaction requires light energy from the sun, which is absorbed by a green substance called chlorophyll. The plants absorb the water through their roots from the earth and carbon dioxide through their leaves.
According to scientists, photosynthesis is “the process by which green plants and some other organisms use sunlight to synthesize foods from carbon dioxide and water. Photosynthesis in plants generally involves the green pigment chlorophyll and generates oxygen as a byproduct.” ("pho•to•syn•the•sis,")
Plants also had to adapt on the surface in order to survive the climate change of moving onto land. The changes made to the surface of plants are most closely observed by their formation of a cuticular wax. This waxy cuticle is impermeable to water and acts as a method of controlling plant’s water intake. It can be made thinner or thicker depending on the plant’s needs and the environment at the time, changing in response to droughts or excessive amounts of rain.
Photosynthesis is a cycle plants go through converting light into chemical energy for use later. Photosynthesis starts in the chloroplasts, they capture chlorophyll, an important chemical needed for photosynthesis. Chloroplasts also take water, carbon dioxide, oxygen and glucose. The chlorophyll is taken to the stroma, where carbon dioxide and water mix together to make