String Theory

1670 Words4 Pages

INTRODUCTION
This document is for persons who have received their graduate degree in theoretical physics and are looking to make their way into the concentration of superstring theory, and what postgraduate mathematics courses are required to do so. Supersting theory is one of the latest forms of theoretical physics and a popular topic with today’s society. However, because of the highly advanced nature of the mathematics involved with Supersting theory, two postgraduate forms of mathematics are required in order to be on the leading edge of work in this field. These are Noncommutative Geometry and K-theory.

FINDINGS
STRING THEORY
Superstring theory is an attempt by humans to model the four fundamental forces of physics as vibrations of tiny supersymmetric strings. Superstring theory seems the most likely to lead to theories of quantum gravity, an attempt to explain gravity’s relatively weak force when compared to the other forces of physics (“Quantum gravity”, nd). Superstring theory is also "supersymmetric string theory." It is referred to as this because unlike bosonic string theory, the original form of string theory (Bosonic string theory, nd), it is the version of the theory that incorporates fermions, particles that form totally antisymmetric composite quantum states (Fermions, nd), and supersymmetry, which link bosons and fermions (“Supersymmetry”, nd; “Superstring theory”, nd)
As of now, the main goal of theoretical physics is to explain how gravity relates to the other three fundamental forces of natural physics. However with as with every quantum field theory, there are infinite probabilities that result from the calculations. Unlike electromagnetic force, strong nuclear force, and weak nuclear force, physicists have not been able to find a mathematical technique that eliminates these infinities (“Superstring theory”, nd). Therefore, the quantum theory of gravity must be developed by a different means than those used for the other forces.
Superstring theory dictates that the base of all that is real would be tiny vibrating strings the size of a plank’s length. The proposed messenger particle for gravitational force, a graviton is predicted by the theory to be a string with wave amplitude zero. Another insight the theory provides is that “no measurable differences can be detected between strings that wrap around dimensions smaller than themselves and those that move along larger dimensions (i.e., effects in a dimension of size R equal those whose size is 1/R)” (Superstring theory, nd para 3). This is true because according to currant theory, a universe could never become smaller than a string.

More about String Theory

Open Document