Microsurgery: Sewing Blood Vessels and Nerves Back Together

890 Words2 Pages

Microsurgery: Sewing Blood Vessels and Nerves Back Together

A man came into the emergency ward at one o'clock. His thumb came in an

hour later. The surgeon's job: get them back together.

The successful re-attaching of fingers to hand requires long hours of

painstaking work in microsurgery. In the operating room , the surgeon

doesn't stand, but sits in a chair that supports her body. Her arm is

cradled by a pillow. Scalpels are present as are other standard surgical

tools, but the suture threads are almost invisible, the needle thinner

than a human hair. And all the surgical activity revolves around the

most important instument, the microscope.

The surgeon will spend the next few hours looking through the microscope

at broken blood vessels and nerves and sewing them back together again.

The needles are so thin that they have to be held with needlenosed

jeweller's forceps and will sew together nerves that are as wide as the

thickness of a penny. To make such a stitch, the surgeon's hands will

move no more than the width of the folded side of a piece of paper seen

end on!

Imagine trying to sew two pieces of spaghetti together and you'll have

some idea of what microsurgery involves.

Twenty-five years ago, this man's thumb would have been lost. But in the

1960s, surgeon's began using microscopes to sew what previously had been

almost invisible blood vessels and nerves in limbs. Their sewing

technique had been developed on large blood vessels over a half century

earlier but could not be used in microsurgery until the needles and

sutures became small enough. The surgical technique, still widely used

today, had taken the frustrating unreliability out of sewing slippery,

round-ended blood vessels by ingeniously turning them into triangles. To

do this, a cut end of a blood vessel was stitched at three equidistant

points and pulled slightly apart to give an anchored, triangular shape.

This now lent itself to easier, more dependable stitching and paved the

way for microsurgery where as many as twenty stitches will have to be made

in a blood vessel three millimetres thick. The needle used for this can

be just 70 millimetres wide, only ten times the width of a human blood

cell.

All this technology is focused on getting body parts back together again

successfully. The more blood vessels reattached, the better the survival

chances for a toe or a finger. The finer the nerve resection, the better

the feeling in a damaged part of the face, or control in a previously

useless arm. But the wounded and severed body part must be treated

More about Microsurgery: Sewing Blood Vessels and Nerves Back Together

Open Document