Image Intensification Essay

1038 Words3 Pages

Image intensification is the process of converting x-ray into visible light. “Early fluoroscopic procedures produced visual images of low intensity, which required the radiologist's eyes to be dark adapted and restricted image recording. In the late 1940s, with the rapid developments in electronics and borrowing the ideas from vacuum tube technology, scientists invented the x-ray image intensifier, which considerably brightened fluoroscopic images” (Wang & Blackburn, 2000, np). We will explore the image-intensification tube, the various gain parameters associated with the tube, and the magnification mode of the image intensifier.
The image-intensifying tube is extremely intricate and allows for the conversion of the x-ray beam to be converted
As x-rays exit the patient, they interact with a cesium iodide input phosphor which converts the x-ray energy into visible light. Cesium iodide crystals are a tightly packed layer of linear needles which help improve spatial resolution by allowing little light dispersion. Attached to the input phosphor is the photocathode. Bushong describes the photocathode as, “a thin metal layer usually composed of cesium and antinomy compounds that respond to stimulation of input phosphor light by the emission of electrons.” (Bushong, 2013, p. 405). This phenomenon of electron emission following light stimulation is called photoemission. The emission of just one electron through photoemission is dependent upon numerous light photons. The amount of electrons produced by the photocathode is directly proportional to how much light reaches it from the input phosphor, which is directly proportional to the intensity of the initial x-ray beam. These electrons will be accelerated to the anode where they will pass through a small hole to the output phosphor. The output phosphor, made of zinc cadmium sulfide, is where the electrons produced through photoemission will interact and produce light. It is extremely

More about Image Intensification Essay

Open Document