Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Relevance of mendels genetics to modern genetics
Chapter 14 mendel and genetics
Consider essay on gregor mendel in relation to genetics
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Relevance of mendels genetics to modern genetics
The main purpose of this lab was to determine if the mutant genes were dominant or recessive, autosomal or x-linked, and if either gene combination was linked. Also, if they were linked, one was to determine how far apart. In this experiment, fruit flies were used to obtain a better understanding of Gregor Mendel’s genetic principles. Using the law of segregation and the law of independent assortment, one of the main objectives was to learn how certain traits were inherited while others were not and to determine if two different fruit fly crosses fit the 9:3:3:1 ratio. In the beginning of the experiment, a two vials were obtained and prepared, and following this the phenotypes and sexes were observed. In each vial, there was a cross with first
The purpose of this experiment is to determine the absolute configuration of an unknown chiral secondary alcohol using the competing enantioselective conversion (CEC) method. This method uses both R- and S- enantiomers of a chiral acyl-transfer catalyst called homobenzotetramisole (HBTM), in separate parallel reactions, and thin layer chromatography to identify the stereochemistry of the secondary alcohol, whether it be an R- or S- enantiomer. Quantitative analysis was performed using a program called ImageJ after the appropriate picture was taken of the stained TLC plate. The molecular structure of the unknown alcohol was identified using 1H NMR spectroscopy by matching the hydrogens to the corresponding peak.
Variation in selection pressures on the goldenrod gall fly and the competitive interactions of its natural enemies
We observed Sowbugs in multiple environments to determine which environment they preferred. The observational chamber was a rectangle box split equally in half. One side of this rectangle was filled with dry sand that had been heated for five minutes by a lamp, and the other side was filled with damp soil that did not receive the lamp heat. We placed each sowbug on the middle boarder of the cool, damp soil and the hot, dry sand. We each chose one sowbug to track, and made a record of its placement each minute for five minutes total. We repeated this process three times. After each repetition, we removed the sowbugs, and replaced them with new sowbugs to observe. After this observation, we shared, and recorded our results. The sowbugs spent
In order to figure out the genes responsible, there are several other factors that must be determined. These factors include the number of genes involved, if each gene is x-linked or autosomal, if the mutant or wild-type allele for each is dominant, and if genes are linked or on different chromosomes. Proposed crosses include reciprocal crosses between the pure-breeding mutants of strains A and B with the wild-type will help determine if the genes or sex-linked or autosomal, in addition to which alleles are dominant (8). Another proposed cross includes complementation crosses between pure-breading mutants from strains A and B to determine if one or two genes are involved (8). Furthermore, testcrosses between F1 progeny and pure-breeding recessive mutants from strains A and B, which will help determine if genes are linked on the chromosome or if they assort independently (8). These proposed crosses are shown in the attached
The purpose of our experiment was to test whether or not the Wisconsin Fast Plants, or Brassica rapa, followed the Mendelian genetics and its law of inheritance. First, after we crossed the heterozygous F1 generation, we created an F2 generation which we used to analyze. After analyzing our results, we conducted a chi-square test for for both the F1 and F2 generations to test their “goodness of fit”. For the F1 generation we calculated an x2 value of 6.97, which was greater than the value on the chi-square table at a p-value of 0.05 and 1 degree of freedom (6.97 > 3.84). This meant that we had to reject our hypothesis that stated there would be no difference between the observed and expected values. This showed us that the F1
Conclusion for class di-hybrid cross: The p value 0.779 is in the non-significant range in the chi square table. The null hypothesis is therefore correct. Sepia eyes and vestigial wings in the flies is a mutation in the genes that is not linked meaning it is a product of independent assortment.
In this experiment, Mendelain Models are observed. The purpose of the experiment is to understand how traits are passed from one generation to the other as well as understanding the difference between sex linked and autosomal genes. One particular trait that is observed in this experiment is when a fly is lacking wings, also known as an apterous mutation. In this experiment, we will determine whether this mutation is carried on an autosomal chromosome or on a sex chromosome. The data for this experiment will be determined statistically with the aid of a chi-square. If the trait is autosomal, then it will be able to be passed to the next generation on an autosomal chromosome, meaning that there should be an equal amount of male and
The major topic of this experiment was to examine two different crosses between Drosophila fruit flies and to determine how many flies of each phenotype were produced. Phenotype refers to an individual’s appearance, where as genotype refers to an individual’s genes. The basic law of genetics that was examined in this lab was formulated by a man often times called the “father of genetics,” Gregor Mendel. He determined that individuals have two alternate forms of a gene, referred to as two alleles. An individual can me homozygous dominant (two dominant alleles, AA), homozygous recessive, (two recessive alleles, aa), or heterozygous (one dominant and one recessive allele, Aa). There were tow particular crosses that took place in this experiment. The first cross-performed was Ebony Bodies versus Vestigle Wings, where Long wings are dominant over short wings and normal bodies are dominant over black bodies. The other cross that was performed was White versus Wild where red eyes in fruit flies are dominant over white eyes.
Gregor Mendel was born into a German family, as a young man Mendel worked as a gardener and studied beekeeping. In his later life Mendel gained his fame as the founder of the modern science of genetics. The research that was his claim to fame was his pea plant experiment. Mendel looked at seven different characteristics of the pea plants. For example with seed colors when he bred a yellow pea and green pea together their offspring plant was always yellow. Though, in the next generation of plants, the green peas reemerged at a 1:3 ratio. To explain what he had discovered, Mendel put together the terms “recessive” and “dominant” in reference to specific traits. Such as, in the previous example the green peas were recessive and the yellow peas
The purpose of this experiment is to conduct genetics studies using drosophila fly as the test organism. Scientists can study the basic biology that is shared by all organisms using a model organism, such as drosophila fly1. Drosophila fly, or more commonly known as fruit fly, has several qualities that makes it well suited for experimental genetics cross. First, fruit flies are low maintenance organisms. They are small in size (few millimeters long), so they occupy a small space and a lot of them can fit in one vial at the same time. They only require a media to feed on. In this lab, instant media was used, which is efficient as it only requires the addition of water to be used. This media contains ingredients that the fruit fly can feed one,
In this lab, we experimented on wingless samples of Drosophila. Now, there are two different types of fruit flies as discovered by Marla Sokolowski; one walks around more than the other. The names Rover and Sitter are given respectively. The main difference between the two types are demonstrated when feeding. Speaking of which, fruit flies don’t feed on the fruit itself, what they feed on are the bacteria that grow on rotting fruit. The fruit flies find food to eat via the use of chemoreceptors, which alert the fly that there is food nearby by stimulating its sense of smell. They will then fly over to the food source and start feeding. Now this is where the difference between Rovers and Sitters comes to play. Let’s say the fruit fly runs out
Mendel did this with seven different character traits which were flower color, seed color, seed shape, pod shape, pod color, flower position, and stem length. For example, for flower color, in Mendel’s control group, Mendel had two sets of plants, one was purple and one was white. Everything was the same between these plants other than their flower color. Mendel first began his experiment by crossing a purple-flowered plant with a white flowered plant using pollen from the white flowered plant on the purple-flowered plant. This was the P or parental generation. This cross resulted in purple-flowered plants. This new generation is called the F1 generation. Afterwards, he did the opposite and pollinated white flowered plants with pollen from the purple flowered plants. Yet again this still resulted in purple flowered plants. The outcomes of this experiment first disproved the idea that if you cross two colors, then a color that is a mixture of the two will be shown in the offspring. It also gave early rise to the idea of gene dominance. Mendel then was unsure as to why there was no longer a sign of any white in any of the
These traits included the flower color, seed color, seed texture, pod color, pod shape, flower position and plant height. He began with a homozygous parent of both the recessive and dominant traits. He then crossed the filial one generation to create the filial two generation. He found that the results of each traits were always similar to the predicted ratio of 3:1. Once seeing the traits passed on from the F2 generation he concluded that the ratio was not 3:1, but instead 1:2:1. This lead to his principle of segregation. This principle stated that the traits did not have a combined form of each trait, but instead represented either the dominant one or recessive distinctly. His ratio of 3:1 was then known as the Mendelian
One attempt at disproving polygenic inheritance may involve the findings made by Gregor Mendel in his pea plants experiment. Critics may argue that since Mendel had discovered the law of independent assortment, stating that one allele is inherited from each parent, and this is the source of trait inheritance from parent to offspring, there cannot be multiple alleles impacting one trait. However, Mendel only studied specific, simple traits of the pea plants, and his results cannot be applied to complex human traits such as skin
Quantitative genetics consists of constantly changing characters. From the name of quantitative genetics, it pursues to ‘quantify’ changes in the frequency distribution of traits that cannot simply be located in discrete phenotypic classes (Falconer, D.S. 1996). Upon analysis of the future of quantitative genetics being relevant in this age of rapid advancement in molecular genetics, it has been useful to evolutionary biology which quantitative genetics has been allocated a major boost from the extensive effort/work of Lande-which portrays how the actual equations of quantitative genetics can be extended and used to solve situations beyond livestock and the improvements of crops. In the activities of quantitative genetics in this age, there seems to be a risk in quantitative genetics falling on rough times, having being known as the ‘old’ way of molecular genetics or ‘The out-moded’ as opposed to the comparison of the new types/areas of molecular genetics of today’s age and era. The intention is to bring awareness of the importance of the use of quantitative genetics and placing it in proper perspective. As well as to target the amazing successes, especially central questions of evolutionary biology that can only be statistically answered fully via the requirement of a quantitative genetic perspective. Although through the quantitative genetics theory, the ability and availability to take into consideration the inheritance of quantitative traits such as fertility, the body size, etc is of high importance. Quantitative genetics is also an important contribution to the understanding of inbreeding depression which is the reduced productiveness of the offspring of closely related individuals. The counter-intuitive outcome of quantita...