The experiments we conducted studied the effect of different temperatures on germinating beans and how effective the cellular respiration of these beans are under these varying conditions. We performed two experiments, the first with temperature at 22ºC and the second with the temperature at 13ºC, both as the independent variable. Then, we measured the amount of carbon dioxide and oxygen from the bean container as the dependent variable. Our hypothesis was that the germinating beans respiration would be most effective at the room temperature. Our null hypothesis was that temperature wouldn’t have any effect on the germinating bean's respiration ability. Our resulting data rejected our null hypothesis in that temperature definitely affected the germinating beans effectiveness at respiration, and in fact the most effective temperature were the same as the temperatures the beans would naturally be conducting cellular respiration at, 22ºC.
In some aspects, plants and people are not much different from one another. Although plants make sugar out of energy from the sun, when plants need energy they have to metabolize their stored goods (sugar) through a process called Cellular Respiration. Cellular respiration is a “metabolic reaction and process that takes place in the cells of organisms to convert biochemical energy. Cells respond to changing metabolic needs by controlling reaction rates” (Biology Corner, n.d. p.1). The reactions involved in cellular respiration are catabolic pathways, their job is to break-down larger molecules into smaller ones, in return releasing energy. Respiration is one key way for a cell to gain and use useful energy for cellular activity. There were two parts to this experiment. The ...
... middle of paper ...
...at the amount of oxygen being consumed was considered to be the amount of oxygen required to complete the work being done.
Likewise at 22oC, the clover sprouts were producing carbon dioxide at a rate of 56.47 ppm/minute and when the temperature was reduced to 13oC, the rate was determined to be -0.8938 ppm/minute. These rates showed the clover sprouts were producing more carbon dioxide at 22oC than at 13oC.
The aerobic respiration of the clover sprouts was better utilized at 22oC because the oxygen was being consumed at a steady rate and the carbon dioxide was being produced and expelled more rapidly. This proves the point that the clover sprouts were using light energy and oxygen to break down the sugars producing more ATP and energy to assist in the reactions taking place within the cells. The carbon dioxide was produced and released during this process
Cellular respiration is the process by which energy is harvested involving the oxidation of organic compounds to extract energy from chemical bonds (Raven & Johnson, 2014). There are two types of cellular respiration which include anaerobic respiration, which can be done without oxygen, and aerobic respiration, which requires oxygen. The purpose of this experiment is to determine whether Phaseolus lunatus, also known as dormant seeds or lima beans, respire. You will compare the results of the respiration rate of the dormant seeds, and the Pisum sativum, or garden peas. In this experiment, you will use two constants which will be the temperature of the water and the time each set of peas are soaked and recorded. Using these constants will help
We placed elodea plants into three different beakers and labelled them. Since, we are trying to find how temperature can affect the rate of production of carbon dioxide, we had to place them in different temperatures. So, we labelled the first beaker “Elodea heat” and placed it in a water bath that produced sufficient amount of heat. We labelled the second one “Elodea cool” which was placed in an ice bath filled with ice. The next one “Elodea RT” where the elodea was placed under normal room temperature without any interference. And we named the last one “No Elodea” where we placed no elodea in it and kept the beaker in a dark
The primary nutrients that plants require are carbon, hydrogen, and oxygen from air and water. Sugar has a different effect on animals, humans, and plants. In this experiment, we are testing the effects of sugar on the growth of wheatgrass. For this experiment, we used regular sugar that we put in our food and drinks. To test our hypothesis we are using two groups control and experiment group. The control plant received only water but the experimental plant received sugar but, both plants were placed in the same temperature and same amount of water. Our hypothesis was correct, experiment plant “sugar water” yield more plant growth than control plant “water”. This experiment shows the sugar water plant grow faster than water because of the average of both plants. The sugar water experiment plant had longer in length compared to water control plant.
This lab was done to determine the relationship of gas production to respiration rate. The lab was done with dormant pea seeds and germinating pea seeds. It was done to test the effect of temperature on the rate of cellular respiration in ungerminated versus germinating seeds. We had to determine the change in gas volume in respirometers. This was done to determine how much oxygen was consumed during the experiment. The respirometers contained either germinating, or non-germinating pea seeds. I think that the germinating seeds will have a higher oxygen consumption rate in a room temperature water bath than the non-germinating seeds. My reason for this hypothesis is that a dormant seed would not have to go through respiration because it is not a plant yet. A germinating seed would consume more oxygen because it is growing, and therefore would need to consume oxygen by going through the process of cellular respiration.
The equation of photosynthesis is: 6CO2 + 6H20 Þ C6H12O6 + 6O2 = = = =
The Effect of Light Intensity on the Rate of Oxygen Production in a Plant While Photosynthesis is Taking Place
These studies have helped to further the understanding of how legumes respond in elevated carbon dioxide. Researchers have determined that growth at elevated carbon dioxide concentrations stimulates photosynthesis and the increase of carbon to the plant. However this increase requires a higher nutrient supply to account for the increase in photosynthetic output. Based on these findings, legumes have a competitive advantage over nonleguminous plants when grown at elevated level of carbon dioxide. In natural settings however, nutrient availability greatly affects the response of these legumes (2). Legumes are dependent on their symbiotic relationship to nitrogen fixing bacteria, and this relationship and its response to elevated concentrations of carbon dioxide will continue to be studied for years.
The Effects of Concentration of Sugar on the Respiration Rate of Yeast Investigating the effect of concentration of sugar on the respiration rate of yeast We did an investigation to find how different concentrations of sugar effect the respiration rate of yeast and which type of concentration works best. Respiration is not breathing in and out; it is the breakdown of glucose to make energy using oxygen. Every living cell in every living organism uses respiration to make energy all the time. Plants respire (as well as photosynthesise) to release energy for growth, active uptake, etc…. They can also respire anaerobically (without oxygen) to produce ethanol and carbon dioxide as by-products.
Overview of Cellular Respiration and Photosynthesis Written by Cheril Tague South University Online Cellular Respiration and Photosynthesis are both cellular processes in which organisms use energy. However, photosynthesis converts the light obtained from the sun and turns it into a chemical energy of sugar and oxygen. Cellular respiration is a biochemical process in which the energy is obtained from chemical bonds from food. They both seem the same since they are essential to life, but they are very different processes and not all living things use both to survive ("Difference Between Photosynthesis and Cellular Respiration", 2017). In this paper I will go over the different processes for photosynthesis and the processes for cellular respiration and how they are like each other and how they are essential to our everyday life.
All living organisms require energy. In order to obtain energy, cells within the organisms must go through the processes of cellular respiration and/or fermentation. The way in which “oxidation of glucose leads to ATP production” is emphasized in cellular respiration (Freeman et al., 2014).
[IMAGE]Carbon dioxide + water Light Energy glucose + oxygen Chlorophyll [IMAGE]6CO2 + 6H20 Light Energy C6 H12 O6 + 6O 2 Chlorophyll Photosynthesis occurs in the leaves of the plant in the palisade layer. Chlorophyll in the cells in the palisade layer absorb light for photosynthesis. The plant releases the oxygen created in photosynthesis back into the air but it uses or stores the glucose for energy, respiration, growth and repair. The leaves and plants are also specially adapted for photosynthesis in their structure and cell alignment. Preliminary Experiment Apparatus * Piece of Elodea Canadensis * Bulb * Voltmeter * Test tube * Beaker * Box *
The effect of temperature on the beetroot membranes Aim of the research: The aim of this investigation is to determine what kind of effect will the increasing temperature have on the plasma membrane of a beetroot cell. Introduction The beetroot contains a red pigment that is kept in the cells by the membranes. If the membranes are damaged, the pigment “betalain” will leek out. The amount of pigment that leeks out can be assessed, as “betalain” will colour any water that surrounds the cell.
This lab attempted to find the rate at which Carbon dioxide is produced when five different test solutions: glycine, sucrose, galactose, water, and glucose were separately mixed with a yeast solution to produce fermentation, a process cells undergo. Fermentation is a major way by which a living cell can obtain energy. By measuring the carbon dioxide released by the test solutions, it could be determined which food source allows a living cell to obtain energy. The focus of the research was to determine which test solution would release the Carbon Dioxide by-product the quickest, by the addition of the yeast solution. The best results came from galactose, which produced .170 ml/minute of carbon dioxide. Followed by glucose, this produced .014 ml/minute; finally, sucrose which produced .012ml/minute of Carbon Dioxide. The test solutions water and glycine did not release Carbon Dioxide because they were not a food source for yeast. The results suggest that sugars are very good energy sources for a cell where amino acid, Glycine, is not.
An Experiment to Investigate the Effect of Light Intensity on the Rate of Photosynthesis. Introduction Photosynthetics take place in the chloroplasts of green plant cells. It can produce simple sugars using carbon dioxide and water causing the release of sugar and oxygen. The chemical equation of photosynthesis is: [ IMAGE ] 6CO 2 + 6H20 C 6 H12 O 6 + 6O2 It has been proven many times that plants need light to be able to photosynthesize, so you can say that without light the plant would neither photosynthesize nor survive.
Photosynthesis is a process in plants that converts light energy into chemical energy, which is stored in bonds of sugar. The process occurs in the chloroplasts, using chlorophyll. Photosynthesis takes place in green leaves. Glucose is made from the raw materials, carbon dioxide, water, light energy and oxygen is given off as a waste product. In these light-dependent reactions, energy is used to split electrons from suitable substances such as water, producing oxygen. In plants, sugars are produced by a later sequence of light-independent reactions called th...