What is cell? Simply cells are smallest the structural and functional unit of an organism and it is a microscopic unit. And it’s like the basic building blocks of all living things. Cells consist so many organelles for examples cytoplasm, cytoskeleton, endoplasmic reticulum, Golgi apparatus, lysosomes, mitochondria, nucleus, plasma membrane, ribosomes and many others.
Human body consists over trillions of cell. All of those cells are provide structure for the body, take in nutrients from food, convert those nutrients into energy, and carry out specialized functions. Cells also contain the body’s hereditary material and can make copies of them.
Examples for cells,
Erythrocyte
Megakaryocyte
Monocyte
Connective tissue macrophage
Epidermal
…show more content…
It is surrounded by a double membrane called the nuclear envelope/membrane. In spots the nuclear envelope fuses to form pores which are selectively permeable. The nucleus contains genetic information (DNA) on special strands called chromosomes.
Function,
The nucleus is the "control center" of the cell, for cell metabolism and reproduction. Figure 4: Nucleus (https://www.thoughtco.com/the-cell-nucleus-373362)
Cell membrane.
The cell membrane also called as plasma membrane and it is a semi permeable membrane that surrounds the cytoplasm.
Structure,
A bi lipid membranous layer composed of proteins and carbohydrates. It is fluid like.
Function,
the cell membrane separates the cell from its external environment, and is selectively permeable (controls what gets in and out). It protects the cell and provides stability.
Proteins are found embedded within the plasma membrane, with some extending all the way through in order to transport materials.
Carbohydrates are attached to proteins and lipids on the outer lipid layer.
Animal cells, plant cells, prokaryotic cells, and fungal cells have plasma membranes. Internal organelles are also encased by
The building of the grocery store is like the cell membrane, because it gives it structure and keeps everything inside safe. The security guard of the front door in the grocery store is like the cell membrane, because it says what can come in and out of the cell. The boss of the store is like the nucleus, because they tell the employes what to do and what needs to be done. The floors of the grocery store is like the cytoplasm, because it hold everything in it place, where it need to be. The illes in the store is
The cell membrane is a structure that controls what enters and leaves the cell. In a basketball stadium, the security guards are like the cell membrane. They can say who comes in if they don’t cause any problems and are following the rules and they can reject them and make them leave if they have something they aren’t supposed to or they are doing something wrong. This is how security guards are like a plant cell’s cell membrane because the security guards control what enters and leaves the stadium like the membrane controls what enters and leaves the cell.
to construct and or maintain the cell membrane. In a microscopic view of the cell membrane we can
This cell membrane plays an important part in Diffusion. Cell membrane and Diffusion Diffusion is the movement of the molecules of gas or liquids from a higher concentrated region to a lower concentration through the partially permeable cell membrane along a concentraion gradient. This explanation is in the diagram shown below: [IMAGE] Turgor When a plant cell is placed in a dilute solution or a less concentrated solution then the water particles pass through the partially permeable membrane and fill the cell up with water. The cell then becomes Turgor or hard. An example of this is a strong well-watered plant.
The Cell or plasma membrane is not a solid structure, but made up of proteins that form channels and pores. In addition, carbohydrate molecules serve as recognition of cells and cholesterol molecules contribute to the stability of the membrane. The structure consists mostly of phospholipid molecules. The membrane separates the interior of all cells from the outside environment.
“The plasma membrane is the edge of life, the boundary that separates the living cell from its nonliving surroundings. The plasma membrane is a remarkable film, so thin that you would have to stack 8,000 of these membranes to equal the thickness of the page you are reading. Yet the plasma membrane can regulate the traffic of chemicals into and out of the cell. The key to how a membrane works is its structure” (Simon, 02/2012, p. 60).
Stem cells help us to maintain and heal our bodies, as they are undifferentiated cells, their roles are not yet determined. They have the ability to become anything during early life and growth. Stem cells come from two sources, namely: embryonic stem cells (embryo’s formed during the blastocyst phase of embryological development) and adult stem cells (see figure 3).
There are two main types of cells in the world. The simplest cells such as bacteria are known as Prokaryotic cells, and human cells are known as Eukaryotic cells. The main difference between each of these cells is that a eukaryotic cell has a nucleus and a membrane bound section in which the cell holds the main DNA which are building blocks of life.
This paper focuses on the benefits of stem cell research in the medical and nursing field. New technology is always being created to help us understand the way the human body works, as well as ways to help us improve diseased states in the body. Our bodies have the ability to proliferate or regrow cells when damage is done to the cells. Take for example the skin, when an abrasion or puncture to the skin causes loss of our skin cells, the body has its own way of causing those cells to regrow. The liver, bone marrow, heart, brain, and muscle all have cells that are capable of differentiating into cells of that same type. These are called stem cells, and are a new medical tool that is helping regrow vital organs in our body to help us survive. Stem cells can come from adult cells, or the blastocyst of the embryo. The cells that come from these are undifferentiated, and can be specialized into certain cell types, making them available for many damaged tissues in the body. While using stem cells in the body is a main use, they are also being used to help doctors understand how disease processes start. By culturing these cells in the lab and watching them develop into muscles, nerve cells, or other tissues, researchers are able to see how diseases affect these cells and possibly discover ways to correct these diseases. While researchers have come very far in using stem cells, there are still many controversies to overcome when using these cells.
Eukaryotic cells have their chromosomes contained in a nucleus. Unicellular orgasisms such as amoebas and yeast, or multi-cellular organisms such as plants and animals consist of eukaryotic cells. Human being consist of approximately 1 billion cells per gram tissue. DNA located in 23 pairs of chromosomes is contained in each cell nucleus. Schleiden in 1838 and Schwann in 1839 made very important discoveries that we consist of cells, and Remark discovered that cells prolifarate through division in 1850. Three decades ago, the molecular mechanisms that regulate the cell cycle and thus cell division was able to be identified. It has been known that these vital mechanisms are conserved through evolution and function in the same way in eukaryotic organisms.
The cell cycle is the process by which cells progress and divide. In normal cells, the cell cycle is controlled by a complex series of signaling pathways by which a cell grows, replicates it’s DNA and divides, these are called proto-oncogenes. A proto-oncogene is a normal gene that could become an oncogene due to mutations. This process has mechanisms to ensure that errors are corrected, if they are not, the cells commit suicide (apoptosis). This process is tightly regulated by the genes within a cell’s nucleus. In cancer, as a result of genetic mutations, this process malfunctions, resulting in uncontrolled cell proliferation. Mutations in proto-oncogene or in a tumour suppressor gene allow a cancerous cell to grow and divide without the normal control imposed by the cell cycle. A change in the DNA sequence of the proto-oncogene gives rise to an oncogene, which
Cells are able to grow and reproduce. Cells reproduce by splitting and passing on their genes (hereditary information) to Daughter cells. The nucleus always divides before the rest of the cell divides. Therefore each daughter cell contains their own nucleus. The nucleus controls the cells activities through the genetic material DNA. The cells in a body are all the same except the gametes they were all made from one cell, the Zygote. This is the cell that was formed when two gametes from your parents fused.
The Animal Cell is a little bit different than the Plant Cell for only a couple of reasons. One is how the Plant Cell has a cell wall and the Animal Cell doesn’t. The cell wall protects and gives structure to the cell. Then there is the Nucleus, which serves as a control center for the cell. Inside the Nucleus there are one or more Nucleoli. They are dense, granular bodies that disappear at the beginning of cell division and reappear at the end. Then you have the Cytoplasm. This is the watery material lying within the cell between the cell membrane and the nucleus. The Cytoplasm also contains organelles, which have specific functions in the cell metabolism. Then there are the Golgi Bodies, which serve as processing, packaging, and storage for the cell. These organelles package and ship things out. Another parts of the cell, a very important one in fact, are the Lysosomes. These organelles are used to break things down and contain enzymes.
Every cell, either prokaryotic or eukaryotic all contain basic cell parts. They are: a plasma membrane, cytoplasm, DNA (the genetic material), and ribosomes. Prokaryotic cells have a simple structure and they are usually smaller than eukaryotic cells. Also, most prokaryotic cells contain a cell wall. In addition to having the basic cell parts, eukaryotic cells also contain a membrane-bounded nucleus and cell organelles.
Their main purpose is to survive and their functions allow them to do so. All cells have common features whether they are eukaryotic or prokaryotic cells. The common features include a plasma membrane, cytoplasm, ribosomes, and DNA. A plasma membrane which is also known as a cellular membrane, surrounds all cells and its primary function is to protect them. Plasma membrane is made up of two layers of phospholipids which are a class of lipids and has many proteins embedded in it. The proteins have a function of providing support and shape to a cell. There are three different proteins in cell membranes (see appendix 1). The plasma membrane also regulates the entry and exit of the cell, as many molecules cross the cell membrane by osmosis and