Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
The work of Gregor Mendel
The work of Gregor Mendel
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: The work of Gregor Mendel
When trying to understand genetics Mendel 's laws are a very big part of it. Mendel 's two laws help us understand and analyze genetic crossings. In our experiment we used drosophila melanogaster flies, a common fruit fly. This was perfect to understand and visualize how the laws take effect. Mendel stated that during the process of genetic crossing; two alleles are formed which then separated to form gametes, which would appear in fertilization. In our experiment we accomplish a cross that determined different eye and body colors. By using the Chi-Square test, we were able to test our results. Our groups hypothesis stated the number of flies from the F2 generation would accommodate Mendelian Genetic Ratio of 9:3:3:1. Our Chi-Square test results …show more content…
Introduction
In the 19th century Gregor Mendel accomplished pioneered the first laws of genetics after crossing peas. He conducted an experiment with pea plants. He would use a paintbrush to transfer the genetic coding from one pea plant to another, so he could know exactly who the parents were. With the end of this experiment Mendel came up with two laws; Mendel 's law of segregation, and Mendel 's law of independent assortment. Mendel crossed over purple pea flowers with white pea flowers, which gave him purple pea flowers for the first generation also called F1. Since the offspring were all purple flowers Mendel understood that the purple gene was the dominant gene. Mendel decided to cross the F1 generation with themselves. Which resulted in three purple pea flowers and one white pea flower. By using basic Punnett square, and identify the genotype as PP and the phenotype as pp. This gave Mendel the following ratio of 3:1, three purple pea flowers and one
…show more content…
We then allowed the larvae to hatch, and counted and recorded the total number of flies, the phenotype, and the sex. After taking down all this information this would allow us to perform a F1 cross, we made sure to examine the flies carefully since we needed virgin flies. We prepared a new vial with the a 1:1 ratio of medium and water. After recording the data of the F1 generation, and picking out the virgin flies for the crossing, and we killed of the rest of the flies using the oil method. After some time passed the F1 generation had larva in the vial. Once we noticed the larva we had to put the flies to sleep and collect the data. We then had to prepare another two new vials and medium and water. Carefully observing the flies and picking out three males and three female virgin flies to place into the new vial. Than killing of the other flies. After about a week we had the F2 generation. This was the most important generation, it was what we were looking for to allow us to observe and compare our experiment to Mendel’s experiment. We were looking for a 9:3:3:1 ratio with our flies. Using a basic Punnett square table and the crossing that we had accomplished our results should have looked like the following Punnett square.
The capital B stated the dominate allele which is brown bodies, and the lower case b states black does which is the recessive allele. The capital E stands for red eyes,
This information supports our hypothesis for the monohybrid cross, but it does not support our hypothesis for the dihybrid cross. In the monohybrid cross, it was expected that we would get a phenotype ratio of 3 plants with anthocyanin for every 1 plant with no anthocyanin. The plants with anthocyanin were easy to differentiate because of the purple color that is shown in the phenotype of plants with anthocyanin in them (Webb 2014). The results we observed were relatively close to this ratio, and the chi-square statist tells us that the monohybrid cross did follow mendelian inheritance patterns. In a different experiment done with Brassica rapa, it was found that when a set of plants with anthocyanin present were crossed with a set of the same species of plant but without anthocyanin present, the phenotypic ratio observed was 3 to 1 (Hayashi et al. 2010). This information just reinforces the idea that a monohybrid cross between Brassica rapa with anthocyanin and without anthocyanin does produce a F2 generation that follows Mendelian inheritance patterns with a 3 to 1 phenotypic ratio. The dihybrid cross we conducted was done with the anthocyanin gene, and the color gene. The dihybrid cross did not follow Mendelian inheritance patterns, so this leads us to believe there must have been a source
Test 4: All three phenotypic frequencies saw a reduction in their number as the homozygote fishes saw a reduction in their number and were not able to pass on their alleles to create either their colored fish or a heterozygote. Both yellow and blue allele frequencies decreased by the same
Conclusion for class mono-hybrid cross: The p value 0.222 was in the non-significant range in the chi square table. The null hypothesis was therefore correct. The colors of the eyes are sex linked due to the equality in the amount of phenotypes given to both male and female.
The F2 punnett square shows that there should not be a female fly that has apterous wing mutation. Our observed experiment showed that female flies are capable of forming in the F2 Generation. Therefore, the mutation is located on autosomal chromosomes. In trial 1, the p value is not significant. This could be due to the fact that the male to female ratio in the F1 generation was unequal. In trial 2, the p value is significant and likely due to chance. The probability error is between 1 % and 5%.
An individual can be homozygous dominant (two dominant alleles, AA), homozygous recessive (two recessive alleles, aa), or heterozygous (one dominant and one recessive allele, Aa). There were two particular crosses that took place in this experiment. The first cross-performed was Ebony Bodies versus Vestigle Wings, where Long wings are dominant over short wings and normal bodies are dominant over black bodies. The other cross that was performed was White versus Wild where red eyes in fruit flies are dominant over white eyes. The purpose of the first experiment, Ebony vs. Vestigle was to see how many of the offspring had normal bodies and normal wings, normal bodies and vestigle wings, ebony bodies and normal wings, and ebony body and vestigle wings.
Gregor Mendel was born into a German family, as a young man Mendel worked as a gardener and studied beekeeping. In his later life Mendel gained his fame as the founder of the modern science of genetics. The research that was his claim to fame was his pea plant experiment. Mendel looked at seven different characteristics of the pea plants. For example with seed colors when he bred a yellow pea and green pea together their offspring plant was always yellow. Though, in the next generation of plants, the green peas reemerged at a 1:3 ratio. To explain what he had discovered, Mendel put together the terms “recessive” and “dominant” in reference to specific traits. Such as, in the previous example the green peas were recessive and the yellow peas
Mendel’s law of segregation states that offspring receive only one of two alleles of a gene from the parent (Brooker et al. 2014). This means that utilizing a monohybrid cross where each parent has both a dominant allele of a gene and a recessive allele, that by producing offspring of these plants, a predictable outcome of trait inheritance should be observed (Brooker et al. 2014). This experiment investigated the inheritance of anthocyanin in Brassica rapa.
Knows as the “Father of Genetics” Mendel is said to have started the conversation leading DNA’s discovery. In 1866, Mendel concluded that genes are formed in pairs and are passed down from parents as distinct units. His experiment consisted of a control plant and he tracked the segregation of those genes in the appearance of them in the offspring. He labeled them as dominant and recessive traits. Through his discovery, Mendel established the rules that future generations of scientists would use in their research. These rules known as “Mendel’s Laws of Heredity” and include three rules. These include The Law of Segregation (a gene pair defines each inherited trait.), The Law of Independent Assortment (Genes for different traits are sorted separately from one another), and The Law of Dominance (An organism with alternate forms of a gene will express the form that is dominant.). Innovative and time-consuming, Mendel’s work went extremely underappreciated and was not put to use until after
[7] Klug, W., Cummings, M., Spencer, C., Palladino M. (2012) Concepts of Genetics: Tenth Edition. Pearson's Education, Inc.
Drosophila is a small fruit fly, it is about 3mm long. This insect is a model organism most commonly used in developmental biology and genetics. The Drosophila fruit flies are especially suited in experiments because of their short life cycle which consist of two weeks; they easily reproduce many offspring, and are also cheap1. The drosophila contains four chromosomes that can easily be experimented on, which allows in-depth observation. In this experiment, Drosophila melanogaster were used to identify the properties of Mendelian inheritance. The Law of Segregation states that allele pairs separate during gamete formation and randomly unite during fertilization and is carried by every individual. The Law of Independent Assortment states that each parent randomly passes on alleles to their offspring. Although, the Law of Independent assortment does not take in account the patters of sex-linked inheritance.
In the 19th century, Mendel’s relatively new science of inheritance and hereditary has increasingly developed into what we commonly understand today as genetics. Peter J. Bowler describes this field as becoming “a very active area of scientific research”.
Daly and Wilson also refer to the research done by a British geneticist named A.J. Bateman to strengthen their arguments for the idea of status competition. Bateman's research focused on lab experiments done on Drosophila or fruit flies. The experiments consisted of taking fruit flies with "distinct genetic markers" and placing them in jars. It was made sure that each jar contained an equal number o...
middle of paper ... ... avour of "purity of the race" idea, but they understand how it worked. Blond hair and blue eyes are recessive genes. Two brown-eyed people can give birth to a blue-eyed child, but two blue-eyed people cannot give birth to a brown-eyed child. Dark skin and dark hair are also dominant genes, so because of evolution, it must mean that the ancestors of humanity had dominant genes.
Genetic testing has become very popular as technology has improved, and has opened many doors in the scientific community. Genetic testing first started in 1866 by a scientist known as, Gregor Mendel, when he published his work on pea plants. The rest was history after his eyes opening experiments on pea plants. However, like any other scientific discovery, it bought conflicts which caused major controversies and a large population disagreed with the concept of playing with the genetic codes of human beings. Playing God was the main argument that people argument that people had against genetics. genetic testing became one of the major conflicts conflicts to talk about, due to the fact that parents could now have the option of deciding if they
These days’ scientists know how we inherit characteristics from our parents; they are able to calculate the probability of inheriting certain traits or genetically passed diseases based on a family medical record. Did you ever ask yourself how did scientists come up to such powerful capabilities? It all started with a monk crossing peas, he realized that there was some kind of pattern to how the peas reproduced. This monk is now known as Gregor Mendel father of genetics. Mendel set a two years trail experiment to see if the peas reproduce with some pattern or he had just observed random change in peas. Mendel then came up with his hypothesis that traits are passed on with a 3:1 ratio after observing this in his trail experiment. Mendel set up an 8 years experiment where he would crossbreed all sorts of peas. After collecting the data from his experiment and mathematically analysing the data he concluded that the inheritance pattern was as he hypothesized a 3:1 ratio. Mendel was rarely quoted for about 34 years. In the late 19th century two botanists/biologists had rediscovered Mendel work, they’ve confirmed a 3:1 ratio. Following the rediscovery, the original paper “EXPERIMENT ON PLANT HYBRIDIZATION” made its way towards the world of genetics. The reason why Mendel was ignored is not known till this day. Some sources suggest that the paper was overlooked since it was a controversy to Darwinism. The main supporter of this theory is R. A. Fisher. In his critique Fisher asks “what was Mendel trying to discover? What did he discover? What did he think he discovered? “Is Mendel’s data accurate? In this essay I will focus on answering Fishers main questions as to how accurate is the data, did Mendel discover anything new, and I will sci...