Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Enzyme kinetics determining the effect of enzyme concentration activity
Enzyme kinetics determining the effect of enzyme concentration activity
Enzyme kinetics determining the effect of enzyme concentration activity
Don’t take our word for it - see why 10 million students trust us with their essay needs.
This graph shows that as enzyme concentration increases absorption also increases. In this case absorbance can be used to measure the enzyme’s activity, the higher the absorption the higher the activity. Since absorption increases as enzyme concentration increases, enzyme activity is promoted by increased enzyme concentrations. After a certain point enzyme activity would fail to increase as a result of increased enzyme concentration since there wouldn’t be enough substrate for all of the enzymes to react with.
My results did not completely support my hypothesis, while I was correct about pH, temperature, enzyme concentration and inhibitors I was incorrect about substrate concentration. I originally believed that increasing substrate concentration
…show more content…
Test tube 2 was the control, in this tube the enzyme was absent, and the purpose of controls are to set a baseline to see if other factors impact the result. Another control that could have been added would be a test tube that has the substrate absent and is the enzyme alone. Tyrosinase does display substrate specificity since it was able to react with the substrate. The optimal temperature appears to be slightly above room temperature for this enzyme. The reaction occurred more slowly at lower temperatures because the particles in the solution are slowing down and aren’t colliding as frequently, in the higher temperatures it slows down because the enzyme is getting denatured, this effect becomes larger as temperature increases. Changing the concentration of enzymes has a direct impact on the enzyme activity. When enzyme concentration increases so does enzyme activity, and when enzyme concentration decreases so does enzyme activity. Enzyme activity and enzyme concentration are directly proportional up until a certain point where increased concentration will have no effect on enzyme …show more content…
These conditions aren’t the same for every enzyme, for example some enzymes may have a higher tolerance for heat and may not become denatured at the temperatures where tyrosinase became denatured. Since enzymes can only properly operate under certain environmental condition it is extremely important for organisms to provide those conditions in order to maintain their functions. Organisms as a result are limited to what they can ingest and where they can live, for example ingesting an extremely basic or acidic solution could cause enzymes in a stomach to not operate
This indicated that the effect of high temperature on the activity of peroxidase was irreversible and so if the optimum temperature was restored the enzyme activity will not increase again because denaturation resulted in a permanent change in the shape of the active site of the peroxidase enzyme. In conclusion, the results of this experiment supported the hypothesis that enzymes including peroxidase enzyme are sensitive to temperature changes[George
Living organisms undergo chemical reactions with the help of unique proteins known as enzymes. Enzymes significantly assist in these processes by accelerating the rate of reaction in order to maintain life in the organism. Without enzymes, an organism would not be able to survive as long, because its chemical reactions would be too slow to prolong life. The properties and functions of enzymes during chemical reactions can help analyze the activity of the specific enzyme catalase, which can be found in bovine liver and yeast. Our hypothesis regarding enzyme activity is that the aspects of biology and environmental factors contribute to the different enzyme activities between bovine liver and yeast.
More hydrogen ions in a solution is a result of lower pH, while fewer hydrogen ions in a solution is a result of increased pH. Meaning that a lower pH level results in a higher enzyme activity reaction and a higher pH level results in a lower enzyme activity reaction (Christianson, 2011 ).
This evidence alone suggests that higher increases in substrate concentration causes smaller and smaller increases in enzyme activity. As substrate concentration increases further, some substrate molecules may have to wait for an active site to become empty as they are already occupied with a substrate molecule. So, the rate of the reaction starts to level off resulting in a plateau in the graphs. This means that the reaction is already working at its maximum rate, and will continue working at that rate until all substrates are broken down. The only way the reaction rate would increase, is if more enzyme was added to the solution. This confirms that increases in substrate concentration above the optimum does not lead to greater enzyme activity. Therefore, the rate of reaction is in proportion to the substrate
The affects of pH, temperature, and salt concentration on the enzyme lactase were all expected to have an effect on enzymatic activity, compared to an untreated 25oC control. The reactions incubated at 37oC were hypothesized to increase the enzymatic activity, because it is normal human body temperature. This hypothesis was supported by the results. The reaction incubated to 60oC was expected to decrease the enzymatic activity, because it is much higher than normal body temperature, however this hypothesis was not supported. When incubated to 0oC, the reaction rate was hypothesized to decrease, and according to the results the hypothesis was supported. Both in low and high pH, the reaction rate was hypothesized to decrease, which was also supported by the results. Lastly, the reaction rate was hypothesized to decrease in a higher salt concentration, which was also supported by the results.
The alternate hypothesis is that there exists an optimal temperature for catecholase enzyme in which the catecholase enzyme can operate with the highest possible activity.
The shape of the molecules is changing and so the enzyme molecules can no longer fit into the gaps in the substrate that they need to and therefore the enzymes have de – natured and can no longer function as they are supposed to and cannot do their job correctly. Changing the temperature: Five different temperatures could be investigated. Water baths were used to maintain a constant temperature. Water baths were set up at 40 degrees, 60 degrees and 80 degrees (Celsius). Room temperature investigations were also carried out (20 degrees).
This hurdle is called the activation energy of the reaction. [IMAGE] By decreasing the activation energy, more substrate is changed to product in a certain amount of time. That is, the enzyme increases the rate of the reaction. [IMAGE] The activity of catalase can be measured by finding the rate of which the oxygen gas is released from the breakdown of Hydrogen Peroxide.
Jim Clark. (2007). The effect of changing conditions in enzyme catalysis. Retrieved on March 6, 2001, from http://www.chemguide.co.uk/organicprops/aminoacids/enzymes2.html
In this experiment as a whole, there were three individual experiments conducted, each with an individualized hypothesis. For the effect of temperature on enzyme activity, catalase activity will be decreased when catalase is exposed to temperatures greater than or less approximately 23 degrees Celsius. For the effect of enzyme concentration on enzyme activity, a concentration of greater or less than approximately 50% enzymes, the less active catalase will be. Lastly, the more the pH buffer deviates from a basic pH of 7, the less active catalase will be.
According to the graph on amylase activity at various enzyme concentration (graph 1), the increase of enzyme dilution results in a slower decrease of amylose percentage. Looking at the graph, the amylose percentage decreases at a fast rate with the undiluted enzyme. However, the enzyme dilution with a concentration of 1:3 decreased at a slow rate over time. Additionally, the higher the enzyme dilution, the higher the amylose percentage. For example, in the graph it can be seen that the enzyme dilution with a 1:9 concentration increased over time. However, there is a drastic increase after four minutes, but this is most likely a result of the error that was encountered during the experiment. The undiluted enzyme and the enzyme dilution had a low amylose percentage because there was high enzyme activity. Also, there was an increase in amylose percentage with the enzyme dilution with a 1: 9 concentrations because there was low enzyme activity.
Many factors, for example, pH and temperature affects the way enzymes work by either increasing the rate or determining the type of product produced (). The report, therefore, analyses the effects of the enzyme peroxidase in metabolic reactions and determining its optimum temperature in the reactions.
The structure of the enzyme is mainly dependent on the active site and variable groups. Extreme temperatures or extreme pHs can alter the structure of an enzyme. Enzymes function to lower the activation energy to break the bonds. They achieve this by putting stress and pressure on the bonds or creating a microenvironment for the substrate. A change in the temperature or a fluctuation in pH can alter...
Enzymes are very specific in nature, which helps them in reactions. When an enzyme recognizes its specific substrate, the enzyme binds to the substrate in a region called the active site which is made of amino acids. Once the substrate binds, the enzyme changes its shape slightly to make an even tighter fit around the substrate, This is called induced fit and it allows for the enzyme to catalyze the reaction more easily. Another factor contributing to catalyses is the amount of substrate present; the more substrate molecules available, the more often they bind the active site. Once all of the enzyme's active sites are occupied by substrate, the enzyme is saturated ( Campbell 99). Enzyme's have optimal conditions under which they perform. These include temperature, pH, and salt concentration, amongst others. In this lab we only focused on pH and temperature. Each enzyme is specific to a certain optimal temperature and pH. When conditions are favorable, the reaction takes place at a faster rate, allowing for more substrates to collide with active sites of enzymes. However, if conditions get too extreme, the enzyme...
The Effect of pH on Enzyme Activity. pH is a measure of the concentration of hydrogen ions in a solution. The higher the hydrogen ion concentration, the lower the pH. Most enzymes function efficiently over a narrow pH range. A change in pH above or below this range reduces the rate of enzyme reaction. considerably.