Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Cell lab report in biology
Method of investigating enzyme activity
Environmental conditions of enzymes
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Cell lab report in biology
Lab Report 1 Principles of Biology 1(BIOL 100)
Fall 2001 Gerard Chretien
Living cells perform a multitude of chemical reactions very rapidly because of the participation of enzymes. Enzymes are biological catalysts, compounds that speed up a chemical reaction without being used up or altered in the reaction. The material with which the catalysts reacts, called the substrate, is modified during the reaction to form a new product. But because the enzyme itself emerges from the reaction unchanged and ready to bind with another substrate molecule, a small amount of enzyme can alter a relatively enormous amount of substrate.
This report will illustrate the enzymatic action of the enzyme catecholase, which is common in plants. To study this particular enzyme in a laboratory, the natural substrate catechol is oxidized by the removal of two hydrogen atoms. The substrates of the enzyme are catechol and oxygen. These substates react with one another within the active site of the enzyme. The products formed by this reaction are benzoquinone has a brown color, you can see that the reaction has taken place. This is called the fruit browning reaction. Benzoquinone inhibits the growth of microorganisms and prevents damaged fruit from rotting. In undamaged cells catecholase is stored in vesicles and does not interact with catechol.
In the presence of the enzyme catecholase:
Catechol+1/2O2 benzoquinone+H2O
The structure of the enzyme is mainly dependent on the active site and variable groups. Extreme temperatures or extreme pHs can alter the structure of an enzyme. Enzymes function to lower the activation energy to break the bonds. They achieve this by putting stress and pressure on the bonds or creating a microenvironment for the substrate. A change in the temperature or a fluctuation in pH can alter...
... middle of paper ...
... questions and test answers. The method has five stages:
1. Making observation.
2. Asking questions.
3. Forming hypotheses, or tentative answers to the questions.
4. Making predictions based on the hypotheses.
5. Testing the predictions by making additional observations or conducting experiments.
The information gained may support or yield opposite results based on predictions being tested. My independent variable would be time and the dependent one would be the enzyme pectinase. I believe the key feature of my experimentation is the control of most factors so that the influence of a single factor can be seen clearly.
The setting would take place within a laboratory, equipped with various components such as tubes, microscope and other related equipment. I would try to investigate the physical properties of pectin such as molecular weight, molecular conformation and aggregation of pectin molecules in the solution. In regards to the pulpiness of the applesauce, I would use the pectin as a emulsifier and stabilizer. This procedure would reduce the pulp of the applesauce considerably without making the solution too watery.
16. Describe two evolutionary consequences if the process of crossing over in meiosis ceased to occur. If crossing over in meiosis ceased to occur there would be less genetic variations and no diversity among a species. This would essentially mean that a species would not be able to adapt to an issue that could arise in the future, meaning that its species could potentially become extinct due to climate change or other arising events.
When this substrate fits into the active site, it forms an enzyme-substrate complex. This means that an enzyme is specific. The bonds that hold enzymes together are quite weak and so are easily broken by conditions that are very different when compared with their optimum conditions. When these bonds are broken the enzyme, along with the active site, is deformed, thus deactivating the enzyme. This is known as a denatured enzyme.
Catecholase is an enzyme formed by catechol and oxygen used to interlock oxygen at relative settings, and it is present in plants and crustaceans (Sanyal et. al, 2014). For example, in most fruits and vegetables, the bruised or exposed area of the pant becomes brown due to the reaction of catechol becoming oxidized and oxygen becoming reduced by gaining hydrogen to form water, which then creates a chain that is is the structural backbone of dark melanoid pigments (Helms et al., 1998). However, not all fruits and plants darken at the same rate. This leads to question the enzymatic strength of catecholase and how nearby surroundings affect its activity. The catecholase enzyme has an optimal temperature of approximately 40°C (Helms et al., 1998). Anything above that level would denature the tertiary or primary structure of the protein and cause it to be inoperable. At low temperatures, enzymes have a slower catalyzing rate. Enzymes also function under optimal pH level or else they will also denature, so an average quantity of ions, not too high or low, present within a solution could determine the efficiency of an enzyme (Helms et al., 1998). Also, if more enzymes were added to the concentration, the solution would have a more active sites available for substrates and allow the reaction rate to increase if excess substrate is present (Helms et al., 1998). However, if more
This experiment requires four tubes with an enzyme solution, chelating agent and deionized water. Also a fifth tube that is the calibration tube for the spectrophotometer, which only has 5ml of dH2O. The calibration tube is used to level out the spectrophotometer to zero before each trial. The spectrophotometer was set at 540 nm, “since green is not a color seen with the conversion of catechol to benzoquinone.” The enzyme solution was made by using potato that was peeled so that the golden color of the skin wouldn’t react or interfere with the red color needed in the spectrophotometer. After it was peeled, it was cut into chunks to minimize excess heat created while it was blended. It was put in a chilled blender and 500ml of deionized water was added. Chilled, deionized water was used because it created a hypotonic environment that caused the cells from the potato to burst and release the catecholase. It was chilled
Enzymes are a biological catalyst, which controls a cellular reaction, they are proteins that act as a catalyst. A catalyst is a substance that speeds up a reaction but does not get used up. It works by reducing the Activation Energy, which is the minimum energy needed for a reaction to happen. A catalyst can make a reaction occur even if it would not happen other wise. Enzymes only affect the speed at which a product is formed, not how much is produced.
Jim Clark. (2007). The effect of changing conditions in enzyme catalysis. Retrieved on March 6, 2001, from http://www.chemguide.co.uk/organicprops/aminoacids/enzymes2.html
Background information:. Enzyme Enzymes are protein molecules that act as the biological catalysts. A Catalyst is a molecule which can speed up chemical reactions but remains unchanged at the end of the reaction. Enzymes catalyze most of the metabolic reactions that take place within a living organism. They speed up the metabolic reactions by lowering the amount of energy.
In this experiment as a whole, there were three individual experiments conducted, each with an individualized hypothesis. For the effect of temperature on enzyme activity, catalase activity will be decreased when catalase is exposed to temperatures greater than or less approximately 23 degrees Celsius. For the effect of enzyme concentration on enzyme activity, a concentration of greater or less than approximately 50% enzymes, the less active catalase will be. Lastly, the more the pH buffer deviates from a basic pH of 7, the less active catalase will be.
Enzymes have the ability to act on a small group of chemically similar substances. Enzymes are very specific, in the sense that each enzyme is limited to interact with only one set of reactants; the reactants are referred to as substrates. Substrates of an enzyme are the chemicals altered by enzyme-catalysed reactions. The extreme specific nature of enzymes are because of the complicated three-dimensional shape, which is due to the particular way the amino acid chain of proteins folds.
Enzymes are types of proteins that work as a substance to help speed up a chemical reaction (Madar & Windelspecht, 104). There are three factors that help enzyme activity increase in speed. The three factors that speed up the activity of enzymes are concentration, an increase in temperature, and a preferred pH environment. Whether or not the reaction continues to move forward is not up to the enzyme, instead the reaction is dependent on a reaction’s free energy. These enzymatic reactions have reactants referred to as substrates. Enzymes do much more than create substrates; enzymes actually work with the substrate in a reaction (Madar &Windelspecht, 106). For reactions in a cell it is important that a specific enzyme is present during the process. For example, lactase must be able to collaborate with lactose in order to break it down (Madar & Windelspecht, 105).
= == In relative terms enzymes are biological catalysts; control the rate of chemical reaction, different temperatures and pH’s affect their optimum rate of reaction in living organisms. In detail; enzymes are globular proteins, which catalyse chemical reactions in living organisms, they are produced by living cells – each cell has hundreds of enzymes. Cells can never run out of enzymes as they or used up in a reaction.
In this lab, it was determined how the rate of an enzyme-catalyzed reaction is affected by physical factors such as enzyme concentration, temperature, and substrate concentration affect. The question of what factors influence enzyme activity can be answered by the results of peroxidase activity and its relation to temperature and whether or not hydroxylamine causes a reaction change with enzyme activity. An enzyme is a protein produced by a living organism that serves as a biological catalyst. A catalyst is a substance that speeds up the rate of a chemical reaction and does so by lowering the activation energy of a reaction. With that energy reactants are brought together so that products can be formed.
Changes in pH lead to the breaking of the ionic bonds that hold the tertiary structure of the enzyme in place. The enzyme begins to lose. its functional shape, particularly the shape of the active site, such. that the substrate will no longer fit into it, the enzyme is said to. be denatured.
Enzymes are protein molecules that are made by organisms to catalyze reactions. Typically, enzymes speeds up the rate of the reaction within cells. Enzymes are primarily important to living organisms because it helps with metabolism and the digestive system. For example, enzymes can break larger molecules into smaller molecules to help the body absorb the smaller pieces faster. In addition, some enzyme molecules bind molecules together. However, the initial purpose of the enzyme is to speed up reactions for a certain reason because they are “highly selective catalysts” (Castro J. 2014). In other words, an enzyme is a catalyst, which is a substance that increases the rate of a reaction without undergoing changes. Moreover, enzymes work with
The grape and pear fruits were set aside at dark place and room temperature for a few days to allow decaying process. After a few days, the grape and pear were squeezed to obtain the fermented juice of the fruit. Then 1 mL each of the juice was transferred into universal bottle to be diluted until 10-5. While for the dried fruit, the samples were crushed using mortar and pestle. 1 g of crushed sample was weighed and transferred into universal bottle and soaked with 5 mL peptone water to allow fermentation process. Then, 1mL of the dried fruit sample was diluted until 10-5 in the universal