When it comes to the topic of cancer, it is one of the most deadly diseases someone can ever contract. Cancer occurs when the cells divide and spread uncontrollably in the body creating clusters that have no space to go and eventually create a tumor (a swelling of a part of the body, generally without inflammation, caused by an abnormal growth of tissue, whether benign or malignant) that needs to be removed surgically. Depending on whether the procedure is successful or not, if it is, we can use a remedy for accelerated cell reproduction. Accelerated cell reproduction is the process of increasing and improving the reproduction and regenerative rate of cells so that they can perform the task of replacing lost or damaged cells, wounds, scrapes, healing scars, etc. As one uses snake venom to cure a snake bite, one can also use an acceleration of cell reproduction to cure cancer which involves cells accelerating and going in the wrong direction. People wonder why we have such terrible diseases such as cancer still abroad. It is because accelerated cell reproduction has not been put into effect. If it gets put into effect then we will have a starting point in our research to success. This will be the beginning of a new era if such a phenomenon were to place.
According to SciTable by NatureEducation (nature.com), cancerous cells are uncontrollable cells. This is where the cons of accelerated cell reproduction take place. The only con that is most likely to occur from accelerated cell reproduction is cancer itself. Since cancer is caused by cells not being able to control their regenerative rate, then if at some point a malfunction occurs in the process, cancer in return can occur. Then in the end, all the procedures, constant study a...
... middle of paper ...
...ing medicines (especially for soldiers) and there are still so many casualties out on the battlefield?” Well, they sure have the money in the right place, but that is not all it takes. It takes the brainpower of many diverse scientists from all around to master the regenerative medicinal method. With its clinical team of scientists, AFIRM’s goal is to, over the next 5 years, develop clinical therapies that will prove useful when focusing on the 5 areas: improving skin regeneration for burn injuries, restoring function to severely traumatized limbs, reconstruction for facial and skull injuries through tissue regeneration, create new treatments to prevent rejection of "composite" transplants such as face and hands and finally reconstruction of the genital and urinary organs and lower abdomen.
A. Regeneration center of Thailand, a medical team trained in biotechnology of cell therapy, published in January 2017, an article describing the differences (RCT).
The acquisition of an immortalized proliferative potential is very important for human tumors because, otherwise, the tumors will not grow in number nor will they metastasize. Mutations in progenitor cells would not be transmitted too far as they have limited replication and proliferation ability. Thus, the growth of the tumors will be limited. Hence, if there is even a very small population of cells with the ability to proliferate continuously, there will be a source for productions of more cells for the tumor. Clonogenic assays have shown that, though most cells in a tumor have a limited ability to proliferate, a subset of cancer cells exist in these tumors that continuously proliferate and give rise to new tumors on transplantation.
Cancer is a disease in which cells multiply out of control and gradually build a mass of tissue called a tumor. There has been a large amount of research dedicated to the treatment and cure of cancer. Several types of treatments have been developed. The following are just some of the major examples of cancer therapy: surgery, chemotherapy, radiation therapy, biologic therapy, biorhythms, unconventional treatments, and hyperthermia. Each type of treatment is discussed in detail below.
..., while a cell undergoes cell cycle, when a cell comes in contact with another cell, it stops reproducing. However, cancer cells continue to duplicate repeatedly until there is a mass of cells or a tumor to form (see figure 9). Lastly, in cell division when there is a mutation or abnormality in the DNA, a normal cell stops dividing. However, a cancerous cell will continue to duplicate and form mutations (“Cell Biology and Cancer”). Also, cancer cells are harmful because they grow and duplicate with complete disregard to the functions and limitations of the body (see figure 10). Also, cancerous cells have the ability to spread through metastasis throughout parts of the body through the bloodstream. In terms of similar behavior to that of normal cells, cancerous cells also duplicate, but at a very different rate ("Cancer Cells vs. Normal Cells: What's Different?").
Cancer has been an active concern in our society for the past couple decades, since we truly discovered the nature of cancer and the potency it brings along with it. However, it was not until the mid-20th century that scientists were beginning to truly understand the origin of cancer. Scientists dating back all the way to the Renaissance, when they first began performing autopsies to learn more about the human body and form, noticed abnormalities but it never clicked that it was something much worse than it seemed. Research has continued since then, and it has continued to thrive even to this day. When James Watson and Francis Crick discovered DNA and it’s chemical structure in 1962, it opened up doors that even they could not expect. With the understanding of DNA and how it affected the way we look at life, came the beginning of the understanding of mutated DNA (which is a cause of the growth of cancerous cells). In this past century, researching scientists discovered that cancer is linked with the DNA that resides in a cell’s nucleus. By ways of damage to the cells via chemicals or radiation, or even introduction of a new DNA, the cancerous cells begin to form and duplicate. We are learning more and more about cancer and how to fight it, but we still have much more to learn.
...velopment of tissues to replace damaged organs in the human body. Scientists have discovered for the first time how stem cells could be generated from embryo’s that were produced using adult stem cells.
Cancer is the term used to describe a group of diseases consisting of hundreds of ailments and although there exists so many different types of cancer, they all begin in a similar way. The body is made up of over a trillion cells, and cancer is the uncontrolled growth of malfunctioning cells in the body (Dawson, 1996). “Normal body cells grow, divide, and die in an orderly fashion. During the early years of a person’s life, normal cells divide faster to allow the person to grow. After the person becomes an adult, most cells divide only to replace worn-out or dying cells or to repair injuries” (American Cancer Society, 2012).
The cell cycle is the process by which cells progress and divide. In normal cells, the cell cycle is controlled by a complex series of signaling pathways by which a cell grows, replicates it’s DNA and divides, these are called proto-oncogenes. A proto-oncogene is a normal gene that could become an oncogene due to mutations. This process has mechanisms to ensure that errors are corrected, if they are not, the cells commit suicide (apoptosis). This process is tightly regulated by the genes within a cell’s nucleus. In cancer, as a result of genetic mutations, this process malfunctions, resulting in uncontrolled cell proliferation. Mutations in proto-oncogene or in a tumour suppressor gene allow a cancerous cell to grow and divide without the normal control imposed by the cell cycle. A change in the DNA sequence of the proto-oncogene gives rise to an oncogene, which
Healthy cells grow and divide in a way to keep your body functioning properly. But when a cell is damaged and becomes cancerous, cells continue to divide, even when new cells aren't...
Cancer is a disease that affects human somatic cells. It causes the cells to divide uncontrollably and form masses known as tumors. There are two different types of cancer tumors. Some tumors are benign and other tumors are malignant. Benign tumors look similar to the tissues that they came from and develop slowly. The tumor remains in the same area that the tumor originated in. Malignant tumors are formed from cells that do not resemble the tissue that they came from. They vary in shape and size. This enables pieces of the tumor to break off and spread to other places in the body. Over the past few decades cancer has become a very prominent disease. There are many different types of cancer and many different causes for the the disease. Most cancers are because of a genetic mutation. The most common type occur when a cell is dividing. Proto-oncogenes, which are alleles in a normal cells, mutate to form oncogenes. These oncogenes cause cancer because they do not allow the cells to self destruct or become epistatic. There have been several research projects which have been testing epistatis.
... information needed to stimulate normal cell growth. Failure can lead to the onset of cancer. (Campbell, Reece, Urry, Cain, Wasserman, Minorsky and Jackson, 2008)
Tumors are formed by the alteration of the body’s own cells. This can be caused by environmental factors such as radiation, like UV exposure, chemicals or viruses 1. These can disrupt genes that control growth and cause an increase in cell division and proliferation. Proto-oncogenes are those genes that control normal but essential cell processes that keep cell growth and death in check. Two important categories are apoptosis genes, which regulate cell death, and tumor suppressor genes, which decrease cell propagation 1 . If these genes were mutated to the point where they cannot produce a functioning protein, cell division would continue far past what it was supposed to and unhealthy cells would be allowed to live and continue to multiply. This is what creates a malignant tumor. Certain conditions in the body can also promote the growth of cancer cells. One of these is a deficiency of natural killer (NK) cells, which are able to kill cancer cells by creating a pore in the cell membrane with perforin and releasing granzymes into the cell. Low levels of perforin allow for tumor growth 1. Chronic inflammation can also ...
Many patients in hospitals are waiting for transplants and many of them are dying because they are not receiving the needed organs. To solve this problem, scientists have been using embryonic stem cells to produce organs or tissues to repair or replace damaged ones (Human Cloning). Skin for burn victims, brain cells for the brain damaged, hearts, lungs, livers, and kidneys can all be produced. By combining the technology of stem cell research and human cloning, it will be possible to produce the needed tissues and organs for patients in desperate need of a transplant (Human Cloning). The waiting list for transplants will become a lot shorter and a lot less people will have to suffer and die just because they are in great need of a transplant....
The field of regenerative medicine encompasses numerous strategies, including the use of materials and de novo generated cells, as well as various combinations thereof, to take the place of missing tissue, effectively replacing it both structurally and functionally, or to contribute to tissue healing[29]
The procedures that will be the future of modern medicine currently fall into the realms of taboo and fictional. These procedures encompass every aspect of medical science, from exploration of the human body, curing diseases, to improving a person’s quality of life. Many of these procedures are not very well known, while a few have been in the spotlight. These procedures include cloning, nano-robotics, retro-viruses, and genetic manipulation via gene-specific medications. For any serious breakthroughs in modern medical science, we must embrace these new forms of treatment instead of shying away from them. Second, I’ll attempt to explain how these methods and procedures could benefit mankind.