The Physics of a Yo-yo
In everything that we do, there is some aspect of physics involved in it. Even if we are just standing still on the ground, or leaning up against a wall, there are still numerous forces acting upon us. This paper will tell of the physics involved in throwing a yo-yo.
When you release a yo-yo, gravity acts on its center of mass to pull the yo-yo downward. Because the string of the yo-yo is wrapped around the yo-yo's axle, and because one end of the string is attached to your finger, the yo-yo is forced to rotate as it drops. If the yo-yo could not rotate, it would not drop.
Just as any object falling in a gravitational field, the rate of drop increases with time (it decreases 9.8 meters every second to be exact) and so, necessarily, does the rotation rate of the yo-yo. The rate of drop and the rotation rate are greatest when the bottom is reached and the string is completely unwound. The spinning yo-yo contains rotational kinetic energy taken from the gravitation potential energy through which the yo-yo has dropped.
Usually, the string is tied loosely around the axle so that the yo-yo can continue to spin at the bottom. Because the full length of the string has been laid out, the yo-yo can drop no further and, consequently, the rotation rate cannot increase further. If left in this condition, the friction between the axle and the string will eventually dissipate the energy of rotation or, equivalently, the rotational kinetic energy of the yo-yo and the yo-yo will come to rest.
However, a momentary tug on the string causes the friction between the string and the axle briefly to increase so that the axle no longer slips within the string. When the axle stops slipping, the rotational kinetic energy of the spinning yo-yo is large enough to cause the string to wind around the axle. This causes the yo-yo to begin to "climb" back up the string. After the first one or two rotations, the string can no longer slip, so the process of climbing up the string continues beyond the momentary application of the tug.
As the yo-yo continues to climb back up the string, the angular momentum (rotational kinetic energy) of the yo-yo is converted back into gravitational potential corresponding to the increasing height of the center of mass of the yo-yo.
* Note that the primary clutch (on the left) never stops spinning, but the secondary (right) does stop spinning at idle speeds.
In this experiment we positioned a marble ball on a wooden roller coaster positioned on a physics stand in the sixth hole. Throughout the experiment, we used an electronic timer to record the time of the marble where it passed through the light beam of its clamp. We positioned the clamp at a certain point on the roller coaster and measured the distance from the marble to the clamp; the height of the clamp; and finally the time the ball traveled through the clamp. After we recorded these different figures we calculated the speed of the marble from the given distance traveled and the time. We repeated the step 14 times, then proceeded to graph the speed and the height. Next, we took the measurements of position of the clamp, height, and speed and calculated the potential energy, the kinetic energy, and the total energy. Total energy calculated as mentioned before. Potential energy is taking the mass (m) which is 28.1g times gravity (g) which is 9.8 m/s2 times the height. Kinetic energy is one-half times the mass (m) times velocity (v2). Finally we graphed the calculated kinetic, potential, and total energies of this experiment.
Once a paintball gets into the air its flight is much like that of a golf ball. There are a verity of forces that act upon the ball once its in the air. The ball always has the force of gravity acting on it. This causes the paintball to travel in an arc and return to the earth.
The basic trimmer works by the engine driving a multi-bearing supported hardened steel shaft housed in an aluminium tube through a centrifugal clutch this shaft is connected to a “head” that holds a nylon line that spun at high revolutions per minute (RPM). This nylon line then cuts the grass by hitting the blades of grass at high speed, this cause the grass to be severed at the point of impact. Thus trimming the grass.
As a simple case, consider the simulation of document . In the frictionless case, the only force acting on the skater is gravity. Therefore, according to the conservation of energy, the sum of the kinetic and the potential energy remains constant. As the skater climbs the ramp, his height increases. According to document , as the skater’s potential energy is proportional to his height, the skater’s potential energy increases. However, the skater’s velocity also decreases as he climbs the ramp. Again, according to document , as the skater’s kinetic energy is proportional to his velocity squared, the skater’s kinetic energy decreases. The interplay between these two energies is such that their sum remains constant and the law of conservation of energy remains
The objective of the experiment was to discover the effect of mass and radius on the centripetal force of a system and determine the mass of a hanging object using the discovered properties. Centripetal force is the culmination of multiple forces that act on a spinning system. By attaching a known mass and changing the radius on between a center post and the unknown mass, the unknown mass can be calculated. Likewise, if the inverse is tested, with a variable known mass and fixed radius, the unknown mass can be calculated.
and are designed out of different materials like wood and steel. Although roller coasters are fun and exciting, the questions, what allows them to twist and turn, go up and down hills at a fairly good speed? Why do they not fall off of the track when it goes through a loop? The answer to these questions and others about roller coasters lies in the application of basic physics principals. These principals include potential and kinetic energy, gravity, velocity, projectile motion, centripetal acceleration, friction, and inertia.
Now that you know how to find all of the correct parts of your jump to clear it successfully you can now add some difficulty and variety to the trick by spinning while in the air. Since you know the distance and your velocity from before you can find out what your air time was. Once you have all of that info you can use it to solve for what your angular velocity should be depending of how much you want to spin. That way you can make sure that you'll complete the spins in time to spot your landing and get ready for impact.
...of half-twists is cut in half along its length, it will result in two linked strips, each with the same number of twists as the original.
Our machine showed physics in many ways. It used Newtons laws, collisions, and more aspects of physics. Our project showed ten different aspects in detail. This is our machine.
a gigantic tug of war. With gravity pulling down, and centrifugal force pulling up, the material has to be
Take the measuring tape and measure the length of the string the bob is hanging on. Ensure that this length stays constant throughout the
Gymnasts use physics everyday. As a gymnast I never realized how much physics went into every motion, every back handspring, every mistake on the bars. If gymnasts were physicists (or at least knew more about physics) they would be better equipped to handle the difficult aspects of gymnastics. As a gymnast I learned the motions that were necessary to complete the tricks that I was working on, and as a coach I taught others the same. I never truly understood why a particular angle gave me a better back handspring or why the angle that I hit a springboard at really mattered when completing a vault. We are going to explore some of the different apparatuses in gymnastics and a few of the physics laws that are involved in them. We will not even barely scratch the surface of the different ways that physics can explain gymnastics.
For centuries, human beings have unknowingly used the very physics principles seen in the roller coasters of today in pursuit of not only thrills, but also survival. As early as 30000 years ago, our ancestors were using some of the most basic laws of physics seen in roller coasters today to their advantage. Although they didn’t quite understand why, when they threw a wooden spear high into the air at a woolly mammoth the spear would fall to the ground accelerating at every second. Of course, they were demonstrating gravitation. Physicists of the 16th century knew how to harness the law of gravity as well, using it to construct the first roller coaster- consisting of simple ice slides accelerating down 70-feet slopes before crashing into giant piles of sand (the latter part demonstrating another important physics principle: inertia.) As the centuries prog...
There are some ways Disney can change or add things to their safety features. One way they could change it would be to add sensors on the belt during the whole ride. Normally, the sensor are used just to tell when the belt is buckled in, not when it disconnects. The sensor would inform a cast member that the belt disconnected, and the cast member could safely and efficiently stall the ride to fix the problem. Another major change would be to add grate-like material to the tops and bottoms of all carts. The normal steel “cage” constricted the air flow and could potentially damage the exterior and major components to the safety of the ride. The final fall, at the moment, is pretty jerky. The final major change would be to add magnetic brakes instead of mechanical. This would allow for a softer final