With criminals conducting clever and well thought out plans, forensic science is now become an essential tool for investigating crime scenes. With new technological advancements, it should be thought that this form of evidence is the only most reliable source there is. But many have said otherwise. It is a technique that is used to convict a criminal as well as protecting the innocent. The many skills and areas of forensics help the reliability of an investigation as each expert area are assigned professionally. The three most widely used forensic techniques are Finger Printing, Blood samples and DNA. As the years continue, crimes are conducted with thought and sometimes completely differentiate itself from others in the past bringing up many …show more content…
Although, it is argued among many that 99.9% of human DNA is exactly the same, there is enough to single out criminals with this technique. While this source of evidence was checked for reliability, FBI has estimated that ‘odds of a coincidental match is one in 108 trillion.’ Many cases were solved due to this technological advancement in forensics of DNA and successfully caught the offender. Some examples include the ‘cold hit’ murder case in which the DNA carried out matched a convict in the FBI database. A ‘rarity statistics’ to be told to the jury was allowed in court and the finding of the same DNA profile in the general population showed only a 1 in 930 sextillion chance. The use of DNA as a reliable source has been questioned but said by Harry T. Edwards, U.S. federal judge and part of the NAS committee: “DNA is really the only discipline among the forensic disciplines that consistently produces results that you can rely on with a fair level of confidence, when you’re seeking to determine whether or not a piece of evidence is connected with a particular source.” This technique has also been used to previous unsolved cases that occurred prior to this new advancement due to being highly reliable. Many cases until today still depend on the accuracy of DNA profiling to be solved whilst it’s other goal is to prevent innocent from
The National DNA Index (NDIS) contains over 8,483,906 offender profiles and 324,318 forensic profiles as of June 2010 (Federal Bureau of Investigations, 2010). It has been suggested by Froomkin, a Senior Washington Correspondent, that the FBI is “shifting its resources from forensics to feeding the database” (Froomkin, 2010). This dramatic shift curtails some of the benefits of the CODIS application to the criminal justice system, as the backlogs of DNA samples increase and the statutes of limitations grow nearer and nearer on unsolved crimes.
The theory of DNA, simply stated, is that an individual’s genetic information is unique, with the exception of identical twins, and that it “definitively links biological evidence such as blood, semen, hair and tissue to a single individual” (Saferstein, 2013). This theory has been generally accepted since the mid-80s throughout the scientific community and hence, pursuant to the 1923 Frye ruling, also deemed admissible evidence throughout our justice system.
Nowadays, DNA is a crucial component of a crime scene investigation, used to both to identify perpetrators from crime scenes and to determine a suspect’s guilt or innocence (Butler, 2005). The method of constructing a distinctive “fingerprint” from an individual’s DNA was first described by Alec Jeffreys in 1985. He discovered regions of repetitions of nucleotides inherent in DNA strands that differed from person to person (now known as variable number of tandem repeats, or VNTRs), and developed a technique to adjust the length variation into a definitive identity marker (Butler, 2005). Since then, DNA fingerprinting has been refined to be an indispensible source of evidence, expanded into multiple methods befitting different types of DNA samples. One of the more controversial practices of DNA forensics is familial DNA searching, which takes partial, rather than exact, matches between crime scene DNA and DNA stored in a public database as possible leads for further examination and information about the suspect. Using familial DNA searching for investigative purposes is a reliable and advantageous method to convict criminals.
Therefore, the criminal justice system relies on other nonscientific means that are not accepted or clear. Many of forensic methods have implemented in research when looking for evidence, but the methods that are not scientific and have little or anything to do with science. The result of false evidence by other means leads to false testimony by a forensic analyst. Another issue with forensic errors is that it is a challenge to find a defense expert (Giannelli, 2011). Defense experts are required to help the defense attorneys defend and breakdown all of the doubts in the prosecutors scientific findings in criminal cases. Scientific information is integral in a criminal prosecution, and a defense attorney needs to have an expert to assist he/she in discrediting the prosecution (Giannelli,
The Trace Evidence Unit is known to examine the largest variety of evidence types and uses the biggest range of analytical methods of any unit. materials are compared with standards or known samples to determine whether or not they share any common characteristics. In this paper I will discuss the different kinds of trace evidence and how crime scene investigators use it to solve cases and convict criminals. Trace evidence was first discovered by Edmond Locard. Edmond Locard was born in 1877, and founded the Lyon’s Institute of Criminalistics.
The criminal justice system has changed a lot since the good old days of the Wild West when pretty much anything was legal. Criminals were dealt with in any fashion the law enforcement saw fit. The science of catching criminals has evolved since these days. We are better at catching criminals than ever and we owe this advancement to forensic science. The development of forensic science has given us the important techniques of fingerprinting and DNA analysis. We can use these techniques to catch criminals, prove people's innocence, and keep track of inmates after they have been paroled. There are many different ways of solving crimes using forensic evidence. One of these ways is using blood spatter analysis; this is where the distribution and pattern of bloodstains is studied to find the nature of the event that caused the blood spatter. Many things go into the determination of the cause including: the effects of various types of physical forces on blood, the interaction between blood and the surfaces on which it falls, the location of the person shedding the blood, the location and actions of the assailant, and the movement of them both during the incident. Another common type of forensic evidence is trace evidence. This is commonly recovered from any number of items at a crime scene. These items can include carpet fibers, clothing fibers, or hair found in or around the crime scene. Hairs recovered from crime scenes can be used as an important source of DNA. Examination of material recovered from a victim's or suspect's clothing can allow association to be made between the victim and other people, places, or things involved in the investigation. DNA analysis is the most important part of forensic science. DNA evidence can come in many forms at the crime scene. Some of these forms include hair; bodily fluids recovered at the crime scene or on the victim's body, skin under the victim's fingernails, blood, and many others. This DNA can be the basis of someone's guilt or innocence; it has decided many cases in the twentieth century. As the times continue to change and the criminals get smarter we will always need to find new ways to catch them. Forensic science is the most advanced method yet, but is only the beginning. As the field of science grows so will the abilities of the
Since DNA technology has been used there has been a high number of individuals convicted, linked or found innocent of a crimes. This technology has helped law enforcement catch suspects that may have never been found without the use of this technology. However, the research reflected that there is a need for clearer interpretations of the DNA results, better equality provided for all regardless of race or class and that errors should be reduced to prevent having cases that need to be exonerated.
In today’s time, modern Crime Scene Investigation has increased rapidly. From throughout the late 1900’s and in the early 2000’s (Taylor 1). For all of the evidence that they find, a solid foundation has formed over the thousands of years of Crime Scene
Before the 1980s, courts relied on testimony and eyewitness accounts as a main source of evidence. Notoriously unreliable, these techniques have since faded away to the stunning reliability of DNA forensics. In 1984, British geneticist Alec Jeffreys of the University of Leicester discovered an interesting new marker in the human genome. Most DNA information is the same in every human, but the junk code between genes is unique to every person. Junk DNA used for investigative purposes can be found in blood, saliva, perspiration, sexual fluid, skin tissue, bone marrow, dental pulp, and hair follicles (Butler, 2011). By analyzing this junk code, Jeffreys found certain sequences of 10 to 100 base pairs repeated multiple times. These tandem repeats are also the same for all people, but the number of repetitions is highly variable. Before this discovery, a drop of blood at a crime scene could only reveal a person’s blood type, plus a few proteins unique to certain people. Now DNA forensics can expose a person’s gender, race, susceptibility to diseases, and even propensity for high aggression or drug abuse (Butler, 2011). More importantly, the certainty of DNA evidence is extremely powerful in court. Astounded at this technology’s almost perfect accuracy, the FBI changed the name of its Serology Unit to the DNA Analysis Unit in 1988 when they began accepting requests for DNA comparisons (Using DNA to Solve Crimes, 2014).
Forensic Science, recognized as Forensics, is the solicitation of science to law to understand evidences for crime investigation. Forensic scientists are investigators that collect evidences at the crime scene and analyse it uses technology to reveal scientific evidence in a range of fields. Physical evidence are included things that can be seen, whether with the naked eye or through the use of magnification or other analytical tools. Some of this evidence is categorized as impression evidence2.In this report I’ll determine the areas of forensic science that are relevant to particular investigation and setting out in what method the forensic science procedures I have recognized that would be useful for the particular crime scene.
The transitional growth in the forensic science sector has not been without challenges. Though the world has experienced increased capabilities and scientific knowledge, which has led to faster investigations and results, many forensic experts have argued that forensic laboratory testing, in the light of 21st century technological advancements, is yet to meet the expected rate in quick available testing and analysis (Mennell & Shaw, 2006). This is with respect to the growing rate of crime and the high demand of quick crime scene testing and analysis. In the science of crime scene, analysis and interpretation of evidence is majorly dependent on forensic science, highlighting the change in the role of forensic sciences (Tjin-A-Tsoi, 2013). In the business of forensic science, time is beginning to play important role in the evidence testing and analysis which is becoming crucial in reducing ...
Forensic evidence can provide just outcomes in criminal matters. However, it is not yet an exact science as it can be flawed. It can be misrepresented through the reliability of the evidence, through nonstandard guidelines, and through public perception. Forensic science can be dangerously faulty without focus on the ‘science’ aspect. It can at times be just matching patterns based on an individual’s interpretations. This can lead to a miscarriage of justice and forever alter a person’s life due to a perceived “grey area” (Merritt C, 2010) resulting in a loss of confidence in the reliability of forensic evidence.
As far back as 1832, James Marsh was the first to use forensics at trial to give evidence as a chemist in 1832. Since that time forensic science and evidence has come a long way in various ways and technology to help in determine if the suspect is guilt or not, through such things as DNA testing, blood, and fingerprints. The first forensic police crime lab was created in 1910. The contributions of Dr. Edmond Locard, a French scientist and criminologist, proposed that “everything leaves a trace”. This principle is still valid today as it was so many years ago. No matter how small, the specialized trained technicians and investigators can take these methods and go to a crime scene to get evidence. “Forensic science is the application of sciences such as physics, chemistry, biology, computer science and engineering to matters of law.” (Office of Justice, 2017) These different sciences can help achieve and assist in solving a case. Forensic science has also the ability to prove that a crime was committed, it can find the elements of the crime, it can help place the suspect at the scene and whether the suspect had any contact with the victim. However, in the last several years the techniques and with the use of technology the evidence that forensic science uncovers can also exonerate an innocent individual who has been falsely accused of the
“The word ‘forensics’ means “connected with the courtroom”; so forensic science is, therefore, concerned with gathering hard evidence that can be presented in a trial” (Innes 9). Forensic science is a science that is applied specifically to legal matters, whether criminal or civil. “Few areas in the realm of science are as widespread and important as forensic science” (Hunter 12). Forensics is the one science that is most commonly used in everyday life. It is also a branch of science that incorporates other branches of science such as biology, chemistry, and etc. Since it is used almost every day “No one can dispute the importance of the contributions to society made by forensic science; the ability to solve crime is undeniably important” (Hunter 13). Forensic science has given criminal investigation a new edge. “Advances in science have opened the door for more effective evidence discovery, howev...
Crime today seems as if it keeps getting worse and worse, but without forensic science would we have been able to figure out some of the main details in some cases? Forensic science is any science used to help solve a case/mystery, which is very vital when it comes to criminal investigation research. While researching my project I discovered all the many tasks and difficulties that come with forensics.