Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Importance of gram staining
Quiz on gram staining
Quiz on gram staining
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Importance of gram staining
Gram Staining
What is gram staining?
Gram staining can also be called Gram’s Method because of the biologist it was named after, Hans Christian Gram. It is a procedure to make bacteria easier to see under a microscope
(as they are transparent) and also to differentiate between the two types of bacteria cells based on the composition of their cell wall. These two types are called Gram-positive and Gramnegative.
Gram-positive cells will appear purple and Gram-negative will appear red after the staining process.
What is involved in Gram staining?
The staining process has many steps in which the bacteria on the slide is stained so that biologists can differentiate the bacteria and therefore name the bacteria and see it clearer.
Many things are
Upon receiving the unknown Microorganism (M.O.) #16, I prepared a slide by cleaning and drying it. Then, using a bottle of water I placed sterile drop of water on the slide and used an inoculating loop, flame sterilized, I took a small sample of the unknown growth in my agar slant and smeared it onto the slide in a dime sized circle and then heat fixed it for ten minutes. After ten minutes had passed, I collected the ingredients needed to perform a gram stain. I got the primary stain, crystal violet, and flooded my smear for sixty seconds, and then rinsed the color off with water until the water ran clear. I then flooded the smear with the mordant, grams iodine, and let that sit on the slide for sixty seconds as well. I then rinsed the grams iodine off with water and applied alcohol to the smear to decolorize the cells; however I made sure not to over decolorize and only put enough drops on the smear till the purple ran clear. I then rinsed the slide with water and flooded the smear with safranin the counter stain and let it sit for sixty seconds and then rinsed the color off with water. I blo...
The Gram positive bacteria has been nicknamed Posi. The Gram positive species’ morphology includes having an opaque opacity with a smooth margin. The moisture content of the Gram positive species is shiny and the pigmentation is gold. The Gram positive species grows at an optimal temperature of 37°C. The shape of the Gram positive species is a cocci, with an arrangement of grapelike clusters. The Gram positive species’ size ranges from .5-1.5 µm. Oxygen requirement of the Gram positive species is facultative, and has complete lysis of red blood cells. All results are summarized in Table
They can be found anywhere and identifying them becomes crucial to understanding their characteristics and their effects on other living things, especially humans. Biochemical testing helps us identify the microorganism present with great accuracy. The tests used in this experiment are rudimentary but are fundamental starting points for tests used in medical labs and helps students attain a better understanding of how tests are conducted in a real lab setting. The first step in this process is to use gram-staining technique to narrow down the unknown bacteria into one of the two big domains; gram-negative and gram-positive. Once the gram type is identified, biochemical tests are conducted to narrow down the specific bacterial species.
electrophoresis. The way the PCR method works is by first mixing a solution containing the
Phenotypic methods of classifying microorganisms describe the diversity of bacterial species by naming and grouping organisms based on similarities. The differences between Bacteria, Archaea and Eukaryotes are basic. Bacteria can function and reproduce as single cells but often combine into multicellular colonies. Bacteria are also surrounded by a cell wall. Archaea differ from bacteria in their genetics and biochemistry. Their cell membranes are made with different material than bacteria. Just like bacteria, archaea are also single cell and are surrounded by a cell wall. Eukaryotes, unlike bacteria and archaea, contain a nucleus. And like bacteria and archaea, eukaryotes have a cell wall. The Gram stain is a system used to characterize bacteria based on the structural characteristics of their cell walls. A Gram-positive cell will stain purple if cell walls are thick and a Gram-negative cell wall appears pink. Most bacteria can be classified as belonging to one of four groups (Gram-positive cocci, Gram-positive bacilli, Gram-negative cocci, and Gram-negative bacilli) (Phenotypic analysis. (n.d.).
Bacteria play a large role in our health, the environment, and most aspects of life. They can be used in beneficial ways, such as decomposing wastes, enhancing fertilizer for crops, and breaking down of substances that our bodies cannot. However, many bacteria can also be very harmful by causing disease. Understanding how to identify bacteria has numerous applications and is incredibly important for anyone planning to enter the medical field or begin a career in research. Having the background knowledge of identifying an unknown bacteria may one day aid healthcare professionals diagnose their patient with a particular bacterial infection or help researchers determine various clinical, agricultural, and numerous other uses for bacteria.
During this time, it could only be used in a lab with semi-intense supervision. Now, fast forward a few decades and there are D.I.Y. at home kits. The process of Electrophoresis starts with an electric current being run through a gel containing the molecules of interest. The molecules will then travel through the gel in different directions and speeds, based on their size and charge, allowing them to be separated from each other. Dyes, fluorescent tags, and radioactive labels can all enable the molecules on the gel to be seen after they have been separated. Because of these identification markers, they appear as a band across the top of the gel. Electrophoresis can be used for many different things. It is used to identify and study DNA or DNA fragments, and helps us to better understand the molecular components of both living and deceased organisms. Electrophoresis can also be used to test for genes related to specific diseases and life altering diagnoses such as Multiple Sclerosis, Down’s Syndrome, kidney disease, and some types of cancer. Electrophoresis also plays a major role in the testing of antibiotics. It can be used to determine the purity and concentration of one specific type of antibiotic or several general antibiotics at a time. Electrophoresis is also extremely useful in the creation and testing of
Cells are grouped into three categories namely plant, animal, and prokaryotic cells. In addition, the shape and size of cells range from a few millimeter to microns. The size of a cell is indicative of its function(s). The shape of cells in living organisms may range from concave, to spherical, oval, rectangular, flat, oval, or rod-shaped. The cells can be viewed with the aid of a microscope. Every living organism possesses multicellular and unicellular cells. At the same time, the different types of cells display common structural properties. Examples include the plasma membrane and genetic composition (Jan,
The first thing to consider is the process of cleaning and coating of the boards. This particular process involves the set-up of the machines, the loading of the boards, and the actual cleaning and coating of the said boards by the machines.
The Wright stained lymphocytes were dark pink and pale pink in color. The size of the cells varied, some were quite large, and others were smaller. Some were clumped together in "swirls" and "lines" of cells, while other areas of the slide looked like a polka dot pattern.
Bacterial cells, like plant cells, are surrounded by a cell wall. However, bacterial cell walls are made up of polysaccharide chains linked to amino acids, while plant cell walls are made up of cellulose, which contains no amino acids. Many bacteria secrete a slimy capsule around the outside of the cell wall. The capsule provides additional protection for the cell. Many of the bacteria that cause diseases in animals are surrounded by a capsule. The capsule prevents the white blood cells and antibodies from destroying the invading bacterium. Inside the capsule and the cell wall is the cell membrane. In aerobic bacteria, the reactions of cellular respiration take place on fingerlike infoldings of the cell membrane. Ribosomes are scattered throughout the cytoplasm, and the DNA is generally found in the center of the cell. Many bacilli and spirilla have flagella, which are used for locomotion in water. A few types of bacteria that lack flagella move by gliding on a surface. However, the mechanism of this gliding motion is unknown. Most bacteria are aerobic, they require free oxygen to carry on cellular respiration. Some bacteria, called facultatibe anaerobes can live in either the presence or absence of free oxygen. They obtain energy either by aerobic respiration when oxygen is present or by fermentation when oxygen is absent. Still other bacteria cannot live in the presence of oxygen. These are called obligate anaerobes. Such bacteria obtain energy only fermentation. Through fermentation, different groups of bacteria produce a wide variety of organic compounds. Besides ethyl alcohol and lactic acid, bacterial fermentation can produce acetic acid, acetone, butyl alcohol, glycol, butyric acid, propionic acid, and methane, the main component of natural gas. Most bacteria are heterotrophic bacteria are either saprophytes or parasites. Saprophytes feed on the remains of dead plants and animals, and ordinarily do not cause disease. They release digestive enzymes onto the organic matter. The enzymes breakdown the large food molecules into smaller molecules, which are absorbed by the bacterial cells. Parasites live on or in living organisms, and may cause disease. A few types of bacteria are Autotrophic, they can synthesize the organic nutrients they require from inorganic substances. Autotrophic bacteria are either photosynthetic or Chemosynthetic. The photosynthetic bacteria contain chlorophyll that are different from the plant chlorophyll. In bacterial photosynthesis, hydrogen is obtained by the splitting of compounds other than water.
The primary pitfall of the using the Gram-stain technique is human error. During this 4-step process, it’s easy to overheat during fixation, over wash or
Staining is used in a variety of ways in order to color the background of a cell, discern types of cells and to discern structures of a cell. A differential stain is when multiple dyes are used to stain a cell that take advantage of chemical differences in a cell. Gram staining is a type of differential stain that works by distinguishing gram positive and gram negative cells by coloring them violet or red, respectively. Gram positive cells contain a thick cell wall of peptidoglycan and a single membrane. Gram negative cells contain a thin cell wall which is located between two membrane layers. There are four reagents used in gram staining which include crystal violet, iodine, ethanol and basic fuchsin. Crystal violet is a primary methyl
- can be used to stain cell nuclei red (the cytoplasm will be unstained or yellow)