Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Background information on enzyme
Enzyme discussion
Don’t take our word for it - see why 10 million students trust us with their essay needs.
A. Enzymes are catalytic proteins that speed up biochemical reactions. Most enzymes are composed of proteins, while in some cases they are composed of RNA molecules called ribosomes. Enzymes are highly specific. Each enzyme catalyzes only one chemical reaction.
Two environmental factors can effect enzyme activity: pH and temperature. Changes in the pH can alter the level of hydrophobicity of some regions of a protein, thus altering its shape. If the enzymes shape is altered then it will not bind with its receptor. Temperature also affects enzyme activity. All enzymes perform best at their optimal temperature. In addition, each enzyme has a minimum and maximum temperature at which it can successfully perform. Substrate concentration can chemically
modify the enzyme. If more substrate is added than the rate of reaction for the enzyme will increase and vice versa. Whether environmental or chemical, all factors effecting enzyme activity have a minimum, optimum, and maximum threshold.
This indicated that the effect of high temperature on the activity of peroxidase was irreversible and so if the optimum temperature was restored the enzyme activity will not increase again because denaturation resulted in a permanent change in the shape of the active site of the peroxidase enzyme. In conclusion, the results of this experiment supported the hypothesis that enzymes including peroxidase enzyme are sensitive to temperature changes[George
Enzymes are biomolecules that catalyze or assist chemical reactions. ("Enzyme Information - Disabled World", n.d.,) Without enzymes it would be impossible for an organism to carry out chemical reactions. Enzymes are proteins that carry a chemical reaction for a specific substance or nutrient. For example, the digestive enzymes help food to be broken down so it can be absorbed. Enzymes can either initiate the reaction or speed it up. Substrates are the chemicals that are transformed by enzymes. (Gunsch & Foster, 2014) Reactants are the chemicals in the absence of enzymes. Metabolic pathways that occur in a cell are determined by a set of enzymes which are selective for their substrates and catalyze only a few reactions among the many possibilities.
I will use a set of five pH's to get my readings from the collected
Jim Clark. (2007). The effect of changing conditions in enzyme catalysis. Retrieved on March 6, 2001, from http://www.chemguide.co.uk/organicprops/aminoacids/enzymes2.html
Background information:. Enzyme Enzymes are protein molecules that act as the biological catalysts. A Catalyst is a molecule which can speed up chemical reactions but remains unchanged at the end of the reaction. Enzymes catalyze most of the metabolic reactions that take place within a living organism. They speed up the metabolic reactions by lowering the amount of energy.
Proteins are one of the main building blocks of the body. They are required for the structure, function, and regulation of the body’s tissues and organs. Even smaller units create proteins; these are called amino acids. There are twenty different types of amino acids, and all twenty are configured in many different chains and sequences, producing differing protein structures and functions. An enzyme is a specialized protein that participates in chemical reactions where they serve as catalysts to speed up said reactions, or reduce the energy of activation, noted as Ea (Mader & Windelspecht).
Enzymes have the ability to act on a small group of chemically similar substances. Enzymes are very specific, in the sense that each enzyme is limited to interact with only one set of reactants; the reactants are referred to as substrates. Substrates of an enzyme are the chemicals altered by enzyme-catalysed reactions. The extreme specific nature of enzymes are because of the complicated three-dimensional shape, which is due to the particular way the amino acid chain of proteins folds.
The structure of the enzyme is mainly dependent on the active site and variable groups. Extreme temperatures or extreme pHs can alter the structure of an enzyme. Enzymes function to lower the activation energy to break the bonds. They achieve this by putting stress and pressure on the bonds or creating a microenvironment for the substrate. A change in the temperature or a fluctuation in pH can alter...
Enzymes are types of proteins that work as a substance to help speed up a chemical reaction (Madar & Windelspecht, 104). There are three factors that help enzyme activity increase in speed. The three factors that speed up the activity of enzymes are concentration, an increase in temperature, and a preferred pH environment. Whether or not the reaction continues to move forward is not up to the enzyme, instead the reaction is dependent on a reaction’s free energy. These enzymatic reactions have reactants referred to as substrates. Enzymes do much more than create substrates; enzymes actually work with the substrate in a reaction (Madar &Windelspecht, 106). For reactions in a cell it is important that a specific enzyme is present during the process. For example, lactase must be able to collaborate with lactose in order to break it down (Madar & Windelspecht, 105).
Investigating a Factor that Affects Enzyme Activity Planning -------- Aim --- To investigate a factor which will affect the activity of catalase, whilst keeping all variables constant. Possible Independent Variables ------------------------------ Here are a number of possible independent variables that could be changed in the experiment: Independent variable Continuous/Discontinuous Easy to measure?
Enzymes as mentioned before help speed up reactions, they generally work by bonding to a substrate, this bonding occurs at the active site. This link then forms a different molecule which will benefit its respective process. Every enzyme has its own optimum pH level to work under, if too low the enzyme will be very slow. However if too high the enzyme will then denature and be obsolete. This is why it is important to know the optimum pH level for whatev...
Enzymes work by lowering the activation energy required by molecules to start the reaction off. Enzymes also react (reversibly) with substrates (The molecule(s) that the enzyme is catalysing) this is done by forming Enzyme-substrate complex, which is then broken down into products. As well as being affected by temperature and pH enzymes optimum rate of reaction is also changed by competitive and non competitive inhibitors. Competitive inhibitors inhibit the enzyme so that enzyme-substrate complex’s cant form until it’s unblocked or there is a change in concentration in substrate, this means it takes longer to reach the optimum rate of reaction.
The Effect of pH on Enzyme Activity. pH is a measure of the concentration of hydrogen ions in a solution. The higher the hydrogen ion concentration, the lower the pH. Most enzymes function efficiently over a narrow pH range. A change in pH above or below this range reduces the rate of enzyme reaction. considerably.
If I was to do this experiment again I might use a Fungi amylase to
Without enzymes, reactions wouldn’t occur and living organisms would die. For instance, the enzyme in the stomach breaks down large molecules to smaller molecules to absorb nutrition faster. Researchers experimented with enzyme activity with a potato extract. Researchers will test enzyme activity by increasing and decreasing pH levels, lowering and increasing temperature, and substrate concentration effects. In the first experiment, researchers hypothesized whether different pH levels would change how much Benzoquinone are created and how will the enzymes function in neutral pH levels than higher and lower levels. Researchers used potato extract and different levels of pH to test their hypothesis. In addition, researchers questioned at what temperature does the greatest amount of potato extract enzyme activity take place in. Researchers then hypothesized that the results would indicate the greatest amount of potato enzyme activity level will take place in room temperature. In this experiment, researchers used potato extract and different temperature levels to test the hypothesis. Moreover, researchers wanted to test the color intensity scale and how specific catechol oxidase is for catechol. In this experiment, researchers used dH2O, catechol solution, hydroquinone, and potato extract. Lastly, researchers tested the substrate concentration and how it has an effect on enzyme activity. In this experiment researchers used different measurements of catechol and 1cm of potato extract. Researchers hypothesized that the increase o substrate would level out the enzyme activity