Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Use of Michelson Interferometer
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Use of Michelson Interferometer
Abstract:
The interferometer is the most accurate measuring device known to man. It was created by Albert A. Michelson. The operation of the interferometer described briefly is a light beam that is separated by a beam splitter. The two beams then travel equal distances at 90° of each other where they are reflected off two mirrors back through the beam splitter. They are then superimposed on to a screen. The screen will display an interference pattern of fringes. The interferometer is extremely sensitive to vibrations and should be isolated from them
The interferometer is the most accurate device presently known to man, and most likely will remain the most accurate measuring device for the next hundred years” Cal Christiansen. The interferometer can measure lengths of one half the wavelength of the light source being used. With a HeNe laser (Helium Neon) this length is 316.4nm, about 1/3 of a micron. The interferometer is able to measure very small distances by the interference produced between two lasers beams. With this degree of accuracy there are clearly many uses for this device including, measuring flatness, structural stress, and making linear measurements.
Albert A. Michelson is the father of the interferometer and the “Michelson Interferometer” is still used today. Michelson was born in Prussia in 1872 and later moved to the United States where he joined the U.S. Navy. As an instructor in the Navy academy he was asked to demonstrate the Foucault method of measuring the speed of light and made several improvements on it. Michelson received a grant and built his first interferometer much like the one presently used. It consisted of an Argand lamp, two mirrors, two beam splitters and an eyepiece. The device was extremely sensitive to vibrations and wasn’t accurate until it was brought to the Potsdam Astrophysical Observatory in Berlin where it was mounted on a platform designed for an equatorial telescope. With proper setup Michelson attempted to detect the presence ether, an invisible undetectable material that surrounded by all matter. This was unsuccessful and Einstein later declared that the ether did not exit and light travels at the same speed in all directions. Michelson would later receive the Nobel Prize for science for “precision optical instruments and the spectroscope and metrological investigations conducted herewith.” Several versions of the interferometer were devised by Michelson including, the interferential comparator for standardizing the meter, a mechanical harmonic analyzer for testing the harmonic motion of fringes, and a stellar interferometer for measuring the size of stars.
1) A stationary body will stay stationary unless an external force is applied to it; 2) Force is equal to mass times acceleration, and a change in motion is proportional to the force applied; and 3) For every action, there is an equal and opposite reaction. (Bio.org, 2017) He invented the optics which he helped to inspire the build of the
Possible sources of error in this experiment include the inaccuracy of measurements, as correct measurements are vital for the experiment.
An oscilloscope is a laboratory instrument that commonly used to display and analyze the waveform of electronic signals. This device draws a graph of signal voltage as a function of time. Oscilloscope usually have two-dimensional graph which electrical potential differences represent by Y-axis (vertical) and time represent by X-axis (horizontal). With positive values going upward and negative values going downward (Ask.com, 2014). In any oscilloscope, the horizontal sweep is measured in seconds per division (s/div), milliseconds per division (ms/div), microseconds per division (s/div), or nanoseconds per division (ns/div). The vertical deflection is measured in volts per division (V/div), millivolts per division (mV/div), or microvolts per division (µV/div).
Then, we multiply the result by 100 to get a percentage number. An example calculation from the 5.00mL pipet is: ((5.00mL - 4.9178mL)/5.00mL)*100 = 1.6438%. The percent error allows us to see which type of glassware is the most accurate at measuring substances. From our results, we concluded that the variable auto pipettor was the most accurate, since it had the lowest percent error, at 0.0500%. The volumetric pipet, volumetric flask, and burette, all had similar percent errors at 1.0430%, 0.6394%, and 0.6619%, respectively. These results indicate that these glassware types are still very accurate. Next, the graduated cylinder had a percent error of 1.6400%, which is still relatively low, indicating that the graduated cylinder is also very accurate. The beaker and erlenmeyer flask both had higher percent errors, at 7.5218%, and 9.4146%, respectively. The beaker and the erlenmeyer flask were not accurate at measuring substances. This is perhaps because they are larger, and are meant to hold larger volumes of water, or they are meant to contain and pour substances. After finding out
Beside its contribution to physics Einstein’s relativity also offered so many scientific bases for some breakthroughs and new technologies. We can divide the influences into two aspects.
Throughout Albert Einstein’s lifetime he accomplished many amazing things that have an effect on people today. For example, in 1905, “often called as Einstein’s “miracle year”, he published four papers in the Annalen der Physik, each of which would alter the course of modern physics” (Michio,Kaku 13). Throughout Einstein’s four books, he “applied the quantum theory to light in order to explain the photoelectric effect, offered the first experimental proof of the existence of atoms, laid out the mathematical theory of special relativity, and proved the first mechanism to explain the energy source of the Sun and other stars”(13). Throughout 1905-1915 Einstein began to realize that his theory for relativity was flawed, because “it made no mention of gravitation or acceleration” (19). “In November of 1915, Einstein finally completed the general theory of reality” (20); “in 1921 he won the Nobel Prize in Physics” (Belanger, Craig. 1).
In 1905 Einstein published the Annus Mirabilis papers. These papers explained each of his four main theories; the photoelectric effect, Brownian motion, Special Relativity and Matter energy-equivalence. These four works created the foundation for modern day physics and brought a new view to space, time and matter. Brownian motion is the random movement of small particles in either a gas or a liquid caused by collisions with the particles around them. Albert Einstein came up with mathematical equations that allowed him to determine the exact size of atoms. With these equations Einstein essentially provided the first substantial evidence that atoms actually do exist. Einstein’s second paper was on the photoelectric effect. Until Einstein, the photoelectric effect went unsolved. Einstein concluded that when a photon hits a metal surface, the photoelectrons on the metals surface are emitted as certain light frequencies. Thus proving that light has quanta meaning it has packets of energy. This has brought huge technological advancements and has a lot to do with many things that surround us today. Old television used video camera tubes that required the photoelectric effect to charge the screen and transform the image...
Galileo used this great invention to report astronomical facts such as the moon is cover with craters instead of being smooth, the Milky Way is composed of millions of stars, and Jupiter have four moons. Perhaps the most famous discovery is the Earth revolves around the Sun and the Earth is not the center of the universe (even though he was discredited at the time).
According to the de Broglie relation and Bragg's law, a beam of 54 eV had a wavelength of 0.167 nm. The experimental outcome was 0.165 nm via the grating equation, which closely matched the predictions. Davisson and Germer's accidental discovery of the diffraction of electrons was the first direct evidence confirming de Broglie's hypothesis that particles can have wave properties as well.
Refraction of Light Aim: To find a relationship between the angles of incidence and the angles of refraction by obtaining a set of readings for the angles of incidence and refraction as a light ray passes from air into perspex. Introduction: Refraction is the bending of a wave when it enters a medium where it's speed is different. The refraction of light when it passes from a fast medium to a slow medium bends the light ray toward the normal to the boundary between the two media. The amount of bending depends on the indices of refraction of the two media and is described quantitatively by Snell's Law. (Refer to diagram below)
The barometer is a device for measuring the total pressure of the atmosphere. A primitive barometer can easily be constructed by taking a glass tube about a meter long, sealing one end, filling the tube completely with mercury, placing your thumb firmly over the open end, and carefully inverting the tube into an open dish filled with mercury. The mercury will fall to a height independent of the diameter of the tube and a vacuum will be created above it.
Figure 1.3 – Schematic representation of the operation of a FTIR spectrometer equipped with a Michelson interferometer. The interferogram obtained from a monochromatic source is illustrated (John 2006 (15)).
However, Einstein later introduced a theory which would account for the unexpected results of the Michelson-Morley experiment and in fact contradict the ether theory all together. The Special Theory of Relativity would then continue to revolutionize the way we thought about space and time.
The distance where by a search scanner can discover something different first from its surroundings but not yet identify it.
When a ray of light is bounced or reflected off of a plane surface, there is a specific law that can be used to predict the angle at which it is reflected off of the surface. This is known as the ‘Law of Reflection’ and it states: