Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Contributions of electricity and magnetism
Magnetism-vocabulary
Magnet and magnetism
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Contributions of electricity and magnetism
Research, p.1
Do you want to know a secret? First, consider this: When a magician performs a magic trick, many ask, “How did he do that?” Well…the true magician never tells because it is a secret. But when speaking about magnetism and its use in our everyday lives, you can learn the SECRET—the secret of magnetism! A true scientist would be glad to share his secrets through experimentation. Thus, I will share the secret with you. It begins with science—physics, to be exact: matter and energy, conduction and induction, magnetizing and demagnetizing. All will be explained in my science project. More importantly, to discover through experimentation that the secret behind magnetism could be its power! Let’s start by defining an electromagnet.
An electromagnet is a temporary magnet formed when electric current flows through a wire or a conductor. Most electromagnets consist of wire wound around an iron core. This core is made from soft iron that loses its magnetism quickly when the electric current stops flowing through the wire.
Electromagnetism is the branch of physics that studies the relationship between electricity and magnetism. Electromagnetism is based on the fact that (1) an electric current or a charging electric field produces a magnetic field or (2) a charging magnetic field produces an electric field.
In 1820, the Danish scientist Hans Oersted discovered that a conductor carrying an electric current is surrounded by a magnetic field. When he brought a magnetized needle near a wire in which an electric current was flowing, the needle moved. Because a magnetized needle is moved by magnetic forces, the experiment proved that an electric current produces magnetism.
Research, p.2
Also, during the 1820’s, the French physicist Andre’ Marie Ampere declared that electric currents produce all magnetism. He concluded that a permanent bar magnet has tiny currents flowing in it. The work Oersted and Ampere did led to the development of the electromagnet—which is used in such devices as the telegraph and the electric bell. They confirmed as stated earlier: Most electromagnets consist of a coil of wire wound around an iron core. The electromagnet becomes temporarily magnetized when electric current flows th...
... middle of paper ...
...you have any magnets around you? What shape are they? Magnets come in all shapes and sizes, but they all pull and push with an invisible force. Further, all magnets pull or attract some things but not others. For example, all magnets attract the metal iron. So, if you use a magnet to pick up safety pins or paper clips, it will only attract them if they contain iron.
You probably were aware that electricity can provide light, heat and sound. However, you probably did not know that electricity can also turn something into a magnet! Again, a magnet is anything that attracts or attaches to iron or steel. You have seen small magnets hold pictures and papers on refrigerator doors. There are a number of items in your home that need electromagnets to work, as I demonstrated with my doorbell experiment.
To conclude, as you’ve witnessed, magnets have the ability to expel a force on other magnets or pieces of magnetic material some distance away. The reason that they can do this is because magnets are weaker the farther they are away from another magnet. Now that you know how a magnet works, can you make one? I’ll give you a hint: the North pole and South pole.
was first conceived by Michael Faraday in the year 1832 in his Backerian Lecture to
During the late 1970's, the world of diagnostic imaging changed drastically due to the introduction of Magnetic Resonance Imaging, also known as MRI. For over 30 years, they have grown to become one of the most significant imaging modalities found in the hospitals and clinics ("EDUCATIONAL OBJECTIVES AND FACULTY INFORMATION"). During its ancient days, these machines were referred to as NMRI machines or, “Nuclear Magnetic Resonance Imaging.” The term “nuclear” comes from the fact that the machine has the capability of imaging an atom's nucleus. Eventually, the term was dropped and replaced with just MRI, because “nuclear” did not sit well with the public view ("EDUCATIONAL OBJECTIVES AND FACULTY INFORMATION"). Many people interpreted the machine to produce an excess amount of radiation in comparison to the traditional X-ray machine. What many of them were unaware of, MRI does not disperse a single ounce of ionizing radiation making it one of the safest diagnostic imaging machine available to this date. MRI machines actually use strong magnetic fields and radio waves to produce high quality images consisting of precise details that cannot be seen on CT (Computed Tomography) or X-ray. The MRI magnet is capable of fabricating large and stable magnetic fields making it the most important and biggest component of MRI. The magnet in an MRI machine is measured on a unit called Tesla. While regular magnets commonly use a unit called gauss (1 Tesla = 10,000 gauss). Compared to Earth's magnetic field (0.5 gauss), the magnet in MRI is about 0.5 to 3.0 tesla range meaning it is immensely strong. The powerful magnetic fields of the machine has the ability to pull on any iron-containing objects and may cause them to abruptly move with great for...
The Effect of the Number of Coils on an Electromagnet On Its Strength Aim: - To establish whether a variation in the number of coils will affect an electromagnet's strength. Scientific Knowledge -. The concept of electromagnets is fairly simple. An iron nail wrapped in a series of coils of insulated wire and then connected to a battery, will enable the nail to pick up paper clips. This is because the current emitted from the battery to the coils magnetizes the nail to the surface.
Magnetic fields are frequently compared to gravitational fields. Gravitational fields cause a curvature of space-time. That curvature of space-time provides a mechanism for the gravitational attraction between masses. A magnet also causes a curvature of space-time. In fact a magnet can cause space-time curvature in several distinct ways.
As almost any child knows, magnets have the ability to attract and repel other magnets. This knowledge is now being utilized in separate projects in Germany and Japan to propel and levitate a new and innovative type of train, the magnetic lift train.
The relationship between electricity and magnetism is that each phenomenon generates a field. Electric fields can be pictured by thinking in terms of gravitational forces. Where, any two objects have a gravitational force on one another. Any two electric charges have a force between them (either repelling, or attracting depending on polarity). These electric fields are vector forces, with size and direction at each point in space....
Magnets objects have always caused man to question and wonder what they can be used for. Magnetic object are magnetic because their materials physical make up. The objects magnetic ability depends upon the composition of the material and the other parts of the object that is non magnetic. Magnets are any object with a magnetic field. A magnet has two ends called poles , the north end and the south end. The north pole of one magnet attracts to the south end of another magnet. Opposite poles attract and like poles repel. Different conditions and temperature cause magnets to become stronger or weaker.
The phenomenon called electromagnetic induction was first noticed and investigated by Michael Faraday, in 1831. Electromagnetic induction is the production of an electromotive force (emf) in a conductor as a result of a changing magnetic field about the conductor and is a very important concept. Faraday discovered that, whenever the magnetic field about an electromagnet was made to grow and collapse by closing and opening the electric circuit of which it was a part, an electric current could be detected in a separate conductor nearby. Faraday also investigated the possibility that a current could be produced by a magnetic field being placed near a coiled wire. Just placing the magnet near the wire could not produce a current. Faraday discovered that a current could be produced in this situation only if the magnet had some velocity. The magnet could be moved in either a positive or negative direction but had to be in motion to produce any current in the wire. The current in the coil is called an induced current, because the current is brought about (or “induced”) by a changing magnetic field (Cutnell and Johnson 705). The induced current is sustained by an emf. Since a source of emf is always needed to produce a current, the coil itself behaves as if it were a source of emf. The emf is known as an induced emf. Thus, a changing magnetic field induces an emf in the coil, and the emf leads to an induced current (705). He also found that moving a conductor near a stationary permanent magnet caused a current to flow in the wire as long as it was moving as in the magnet and coiled wire set-up.
Electrical motors play an important role in today’s society, from powering domestic appliances like blenders to industrial equipment such as trains. It almost seems impossible to not use an electric motor in our daily lives. In the comfort of our home, electric motors will operate fans, refrigerators, and air conditioners to just name a few. Researchers are constantly looking for new ways to incorporate electrical motors into our lives. Electrical motors function by converting electrical energy into mechanical energy by using the energy stored in the magnetic field (Sarma, 1981).
The Earth’s magnetic field is a major component to exploring the earth. The north and the south poles have always been a guide for travelers. Using compasses, the direction of the north pole and the south pole has always been provided by the magnetic force of the magnetic field. What many people do not know though is the earth’s magnetic field provides way more than that. The magnetic field, also known as the magnetosphere, protects us from all kinds of harmful substances. Some of these substances include solar wind and harmful radiation from the sun. The magnetosphere also protects the atmosphere, which protects us.
The research that established Faraday as the foremost experimental scientist of his day was, however, in the fields of electricity and magnetism. In 1821 he plotted the magnetic field around a conductor carrying an electric current; the existence of the magnetic field had first been observed by the Danish physicist Hans Christian Oersted in 1819.
Magnets are stones that produce magnetic fields. The magnetic field is invisible, but is responsible for the most noticeable aspect of a magnet: the attraction of a metal object or the repulsion of another magnet. Magnets are used in common everyday household items: credit cards, TVs, speakers, motors, and compasses. A magnets strength is measured by its magnetic moment. (“Magnetism”)
In some Greek experiments, objects attracted each other after rubbing. Other experiments produced objects that pushed away, or repelled, each other. The evidence showed that electric force made matter either attract or repel other matter.
Electric currents produce magnetic fields, they can be as small as macroscopic currents in wires, or microscopic currents in atomic orbits caused by electrons. The magnetic field B is described in terms of force on a moving charge in the Lorentz force law. The relationship of magnetic field and charges leads to many practical applications. Magnetic field sources are dipolar in nature, with a north and south magnetic pole. The magnetic field SI unit is the Tesla, it can be seen in the magnetic part of the Lorentz force law F magnetic = qvB composed of (Newton x second)/(Coulomb x meter). The smaller magnetic field unit is the
When you were young, you may have remembered about trying to make objects stick together or move things, like metal paperclips, just by using a magnet. Back then, you probably thought that magnets’ only exist as play things. But, now that you’re older, you’ve realised that these objects play a significant role in day-to-day life.