Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Conclude with the importance of photosynthesis
Design an experiment for photosynthesis
Conclude with the importance of photosynthesis
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Conclude with the importance of photosynthesis
Introduction
Photosynthesis is a process used every day by plants, algae, and some bacteria to harness light energy and turn it into chemical energy. Chloroplasts play a large role in the process, chloroplasts are organelles much like mitochondria that contain a double membrane and third inner membrane called the thylakoid membrane. It is on the thylakoid membrane where the process takes place. Chloroplasts contain their own DNA which is a major contributor to the stability of this organelle. Without this essential organelle the photosynthetic process would not be possible.
Chlorophyll is the pigment located inside the chloroplasts which gives the plants their green color. It is the substance that absorbs energy from light which excites
…show more content…
The DCPIP accepted the excited electrons passed through the photosystems and was reduced to DCPIPH.
While this process of reduction is taking place protons from water and DCPIP were being pumped into the lumen of the chloroplast. With the concentration of protons and electrons from the reduced DCIPH an electrochemical gradient is produced to create the production of ATP.
In week one of the experiment the effect of light and herbicide on the photosynthesis of chloroplasts was tested using the percent transmittance as a way of measurement. The first cuvette that was altered was the negative control which did not contain any chloroplasts, resulting in a percent transmittance that did not change. The second cuvette contained the chloroplasts and was not exposed to light. Since it was not exposed to light the percent transmittance was very low only increasing by about 1%. The third cuvette was the positive control which contained chloroplasts and was exposed to light. As expected this underwent a high percent transmittance because of the exposure to light. The fourth cuvette was exposed to light and contained chloroplasts and herbicide, a substance used to destroy unwanted plants. The percent transmittance was dramatically reduced compared to the positive control
…show more content…
Since herbicide inhibited the reduction of plastiquionone, electron transfer was reduced. Photosynthesis relies mainly on the transfer of electrons to form energy, which means that inhibiting the reduction of plastiquionone slowed the process of photosynthesis, which was evident by the greatly reduced percent transmittance. This same process was believed to be similar for the effect of insecticide on percent transmittance of photosynthesis. Insecticide is a substance commonly used on or around plants to stop insects from consuming and killing plants. It was hypothesized that insecticide would work in similar ways to inhibit the transfer of electrons in the photosynthetic electron transport chain. In an experiment done by R. Unteidt and M Blanke the effect of insecticide photosynthesis was tested on apple orchard trees. They found that insecticides had similar inhibiting effects as herbicides, inhibiting the transfer of electrons in photosystem II and I. slowing the phosphorylation which inhibits energy (Unteidt and Blanke, 2004). Along with this article and other research information the hypothesis, if insecticides are added to the chloroplast solution then the rate of percent transmittance would be reduced, was
The hypothesis for this experiment was that the cell fraction in the cuvette marked P2 will have more chloroplast activity because it will exhibit greater color change and differences in the absorbance readings compared to the other cuvettes when exposed under the condition of light; moreover, this notion was believed to be so because the more a cell fraction is centrifuged, the more intact chloroplasts we’ll find (Leicht and McAllister,
N.p., 29 Mar. 2014. Web. 28 Mar. 2014. "Related Topics. " Plant Science Research : Ozone Effects on Plants.
Photosynthesis consists of the following equation: Sun light Carbon dioxide + Water = = == == ==> Glucose + Oxygen Chlorophyll Chlorophyll is a substance found in chloroplasts, found in the cells of leaves.
= > [CH2O} + O2 + H2O, This shows that when the light intensity is increased the rate of reaction will be more quicker he only anomalous result there was, is the one in the 100 watt result the reading after 5 minutes is anomalous because it does not follow the predicted pattern of increasing in the production of gas because it is lower I know from my own knowledge of photosynthesise that when the light intensity is increased the rate of reaction will be more quicker because many plants and trees photosynthesise quicker in stronger light and photosynthesise slower in dimly lit places. The chlorophyll absorbs light energy and enables it to be used by the plant for building up sugar. The overall effect is that energy is transferred from sunlight to sugar molecules.
The Effect of Wavelength on Photosynthesis Rate Aim: To be able to To investigate how different wavelengths (colors) of light affect the photosynthetic rate of the synthetic. I will use a pant that is a pond weed called elodea. I will measure the rate of photosynthesis by measuring the amount of o2 given off in bubbles per minute from the elodea. I will do this by placing the Elodea in a test tube with sodium hydrogen. carbonate then I will vary the light wavelength (color) using colored.
Moreover, a future experiment is to determine the effect that the distance between the lamp and the solution has on the rate of photosynthesis. Several experiments with a similar setup to this experiment that vary the distances between the lamp and solution could be used to test this.
[IMAGE]Carbon dioxide + water Light Energy glucose + oxygen Chlorophyll [IMAGE]6CO2 + 6H20 Light Energy C6 H12 O6 + 6O 2 Chlorophyll Photosynthesis occurs in the leaves of the plant in the palisade layer. Chlorophyll in the cells in the palisade layer absorb light for photosynthesis. The plant releases the oxygen created in photosynthesis back into the air but it uses or stores the glucose for energy, respiration, growth and repair. The leaves and plants are also specially adapted for photosynthesis in their structure and cell alignment. Preliminary Experiment Apparatus * Piece of Elodea Canadensis * Bulb * Voltmeter * Test tube * Beaker * Box *
The Effect of Light Intensity on the Rate of Photosynthesis in an Aquatic Plant Introduction The input variable I will be investigating is light, as light is just one of the 4 factors required in the green-plant process of photosynthesis. Photosynthesis is the process by which green-plants use sunlight, carbon dioxide, water & chlorophyll to produce their own food source. This process is also affected by the temperature surrounding the plant (the species of plant we experimented with, pond weed, photosynthesised best at around 20 degrees centigrade.) Light, temperature & CO2 are known as limiting factors, and each is as important as the next in photosynthesis. Light is the factor that is linked with chlorophyll, a green pigment stored in chloroplasts found in the palisade cells, in the upper layer of leaves.
A cuvette was filled 3/ 4ths of the way and the absorbance measured in a spectrophotometer. The data was compiled as a class and recorded. The Spectrophotometer was blanked using a test tube of distilled water.
Photosynthesis in simpler turns is the ability of a live plant to carry on its chemical process by the use of light energy. Photosynthesis can not take place when there is absolutely no light, instead it stores the light it captures during the day, and uses it when needed. Photosynthesis can take place in land plants and aquarian plants such as algae. There are many factors that influence the ability of a plant to go through photosynthesis, such as light, the color of light and amount of water and or light.
This essay has therefore discussed the most popular classes of plant chemical defences, namely terpenes, phenolics, nitrogen-based defences and allelopathy. The effects of these defences on herbivores has also been touched on. Many of these compounds produced by plants have later been extracted by humans for use as insecticides. Compounds such as tannins are also used in the wine industry. These chemicals thus have a very strong economic influence.
An Experiment to Investigate the Effect of Light Intensity on the Rate of Photosynthesis. Introduction Photosynthetics take place in the chloroplasts of green plant cells. It can produce simple sugars using carbon dioxide and water causing the release of sugar and oxygen. The chemical equation of photosynthesis is: [ IMAGE ] 6CO 2 + 6H20 C 6 H12 O 6 + 6O2 It has been proven many times that plants need light to be able to photosynthesize, so you can say that without light the plant would neither photosynthesize nor survive.
Photosynthetic pigments are essential for life because they allow photosynthesis to occur by capturing sunlight which is then used alongside carbon dioxide and water to form organic compounds such as glucose and oxygen. The pigments allow the conversion of light energy to chemical energy which other organisms can benefit from. Oxygen is utilised by other organisms in aerobic respiration. The different pigments present in the chloroplasts allow a wide variety of wavelengths of light to be absorbed for efficient photosynthesis and provide colours to the plant to attract pollinators.
This is the same if there is the light intensity is too high as this can damage the chloroplasts in plants and this will minimize the rate of photosynthesis. As shown in the graph as the light intensity increases, the photosynthesis rate increases until a point is reached where the rate begins to level off into a plateau. At a low light intensity, photosynthesis occurs slowly because only a small quantity of ATP and NADPH is produced. As the light intensity shown in the graph is gradually increasing, more ATP and NADPH (NADH is used in cellular respiration and NADPH is used in photosynthesis) are produced, which means more oxygen and sugar is produced, therefore increasing the rate of photosynthesis. But as the light intensity increases even more and past a certain light intensity on the graph, this is due to the other factors such as carbon dioxide limiting the rate of
Photosynthesis is a key contributor to all living things; photosynthesis provides the oxygen, food, and nutrients that help all living things stay healthy and alive. Photosynthesis converts solar energy into the chemical energy of a carbohydrate. Photosynthetic organisms, including land plants, algae, and cyanobacteria, which are called autotroph...