Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Ethical considerations regarding genetic research
Genetic engineering ethics issues
Benefits of gene therapy
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Ethical considerations regarding genetic research
Contemporary human genetics is fast becoming a force to be reckoned with. Genetics, specifically human genetics, has come a long way, with new research and ground-breaking discoveries sky rocketing in the past decade, and with new breakthroughs being made daily in both treatment of diseases, and some more unorthodox or morally challenging scientific discoveries, human genetics is at the forefront of modern day scientific research. This makes human genetics an interesting and exciting field to be in, but as exhilarating as all the breakthrough discoveries are, some can be rather daunting, as human genetics is consistently pushing the boundaries of ethics, morality and the notions of humanity we previously thought we understood so well.
Our Genetic content is the culmination of who we are: How we
…show more content…
If gene therapy could reach its full potential, the possibility to control many genetic disorders could come to fruition. Gene therapy is used to eliminate mutations that cause genetic disorders, such as cystic fibrosis, by replacing these mutated genes with fully functioning copies of the gene. There is a possible downside to gene therapy: viral vectors are usually the only way with which these functioning copies of the gene can be inserted into an organism, but this poses some safety concerns for the organism.
Although, if many of us were to undergo genetic engineering, or our offspring became mostly genetically engineered offspring, we run the risk of diminishing our gene pool by decreasing our genetic diversity as a specie. Could this lead to us as a species becoming susceptible to extinction by an unknown disease threat? All of this seems rather insubstantial as they could be dealt with at some point if the problem does arise. The most substantial issue is the slippery slope of ethics with its endless rhetorical and hard to answer
The more we know about genetics and the building blocks of life the closer we get to being capable of cloning a human. The study of chromosomes and DNA strains has been going on for years. In 1990, the Unites States Government founded the Human Genome Project (HGP). This program was to research and study the estimated 80,000 human genes and determine the sequences of 3 billion DNA molecules. Knowing and being able to examine each sequence could change how humans respond to diseases, viruses, and toxins common to everyday life. With the technology of today the HGP expects to have a blueprint of all human DNA sequences by the spring of 2000. This accomplishment, even though not cloning, presents other new issues for individuals and society. For this reason the Ethical, Legal, and Social Implications (ELSI) was brought in to identify and address these issues. They operate to secure the individuals rights to those who contribute DNA samples for studies. The ELSI, being the biggest bioethics program, has to decide on important factors when an individual’s personal DNA is calculated. Such factors would include; who would have access to the information, who controls and protects the information and when to use it? Along with these concerns, the ESLI tries to prepare for the estimated impacts that genetic advances could be responsible for in the near future. The availability of such information is becoming to broad and one needs to be concerned where society is going with it.
(Ed.), Opposing Viewpoints. Human Genetics. Farmington Hills, MI: Greenhaven Press. (Reprinted from U.S. News & World Report, 2009, March 23) Retrieved from https://ez1.maricopa.edu:2048/login?url=http://ic.galegroup.com/ic/ovic/ViewpointsDetailsPage/ViewpointsDetailsWindow?
... fight the disease. It is crucial that regulation be a necessary component of gene therapy research and applications. In hopes that the government can regulate and can receive this treatment, not restricting it to people that has serious genetic diseases. Gene therapy will change the field of medicine from what it is today. As scientist discovers more genes and their functions, the potential of this treatment is limitless. Though gene therapy is an auspicious treatment choice for numerous diseases (including inherited disorders, some types of cancer, and certain viral infections), the procedure remains precarious and is still under study to make sure that it will be safe and effective. Thus government regulators and scientist must take a lead role in adopting a practical approach to address these issues and determining the correct procedures for dealing with them.
Human cloning research has once been the subject of terrifying science-fiction films and novels, science experiments gone wrong, accomplished only by the evil scientists twirling their moustaches. However, ideas presented on page and screen are rarely accurate. The possibility of cloning an exact copy of another human with one already fully developed is almost impossible, but through meticulous research, scientists have discovered the numerous benefits of cloning humans, either with individual cells or an embryo.
Have you ever seen a movie or read a book where they can tell what your child will look like or if they have a disease or birth defect. Or have you ever wondered how the world would be shaped if we could have clones or even erase genetic diseases. All of these things are theoretically possible with stem cell research. If we are able to reach this point what would we have to sacrifice in the process. To understand humanity would we have to sacrifice the values that truly make us human? What would the fail rate be if we are able to genetically enhance the human body?
In today’s modern age science is moving at a rapid pace; one of those scientific fields that has taken the largest leaps is that of genetics. When genetics first comes to mind, many of us think of it as a type of science fiction, or a mystical dream. Yet genetics is here, it is real, and has numerous ethical implications.
To conclude, although gene therapy can cure a wide variety of diseases which cannot be cured by traditional medicine, and patients can get permanent cure without rejections, it can be high-risk and immoral. The negative effects of gene therapy lead to the shrink of the number of volunteers, and many trials have been forced to cease. The Gene therapy's potential to revolutionize medicine in the future is exciting, and hopes are high for its role in curing and preventing childhood diseases.
Science and technology are rapidly advancing everyday; in some ways for the better, and in some, for worse. One extremely controversial advance is genetic engineering. As this technology has high potential to do great things, I believe the power genetic engineering is growing out of control. Although society wants to see this concept used to fight disease and illness, enhance people 's lives, and make agriculture more sustainable, there needs to be a point where a line is drawn.
The Human Genome Project is the largest scientific endeavor undertaken since the Manhattan Project, and, as with the Manhattan Project, the completion of the Human Genome Project has brought to surface many moral and ethical issues concerning the use of the knowledge gained from the project. Although genetic tests for certain diseases have been available for 15 years (Ridley, 1999), the completion of the Human Genome Project will certainly lead to an exponential increase in the number of genetic tests available. Therefore, before genetic testing becomes a routine part of a visit to a doctor's office, the two main questions at the heart of the controversy surrounding genetic testing must be addressed: When should genetic testing be used? And who should have access to the results of genetic tests? As I intend to show, genetic tests should only be used for treatable diseases, and individuals should have the freedom to decide who has access to their test results.
In today’s world, people are learning a great deal in the rapidly growing and developing fields of science and technology. Almost each day, an individual can see or hear about new discoveries and advances in these fields of study. One science that is rapidly progressing is genetic testing; a valuable science that promotes prevention efforts for genetically susceptible people and provides new strategies for disease management. Unnaturally, and morally wrong, genetic testing is a controversial science that manipulates human ethics. Although genetic testing has enormous advantages, the uncertainties of genetic testing will depreciate our quality of life, and thereby result in psychological burden, discrimination, and abortion.
Since its inception, gene therapy has captured the attention of the public and ethics disciplines as a therapeutic application of human genetic engineering. The latter, in particular, has lead to concerns about germline modification and questions about the distinction between therapy and enhancement. The development of the gene therapy field and its progress to the clinic has not been without controversy. Although initially considered as a promising approach for treating the genetic of disease, the field has attracted disappointment for failing to fulfil its potential. With the resolution of many of the barriers that restricted the progress of gene therapy and increasing reports of clinical success, it is now generally recognised that earlier expectations may have been premature.
Dr Maggie Pearce says, “The only real option right now to fix genetic diseases is to use gene therapy. In gene therapy, the "good" version of a gene is introduced into a patient's DNA. The hope is that this healthy copy of the gene will overcome the problems of the disease version.” Treatment of genetic diseases does not aim to eliminate the mutated gene from each cell but rather introduces a correctly functioning version of the gene or counteracts the defect caused by the muted gene (Pearce,
Genes are made of DNA – the code of life (Gene Therapy- The Great Debate!). The changes in genes may cause serious problems, which we called genetic disorder. In theory, the only method to cure genetic disorders is gene therapy, which basically means the replacement of genes in order to correct the loss or change in people’s DNA. Although gene therapy gives patients with genetic disorders a permanent cure, it is controversial because it has safety and efficacy problems, and raises ethical issues.
In the end, gene therapy in humans needs to come a long way before it will be widely accepted, but there is great potential in the technology and it needs to be pursued. Bibliography Anderson, W. F. (1992). The Species of the World. Human Gene Therapy -. Science, 256 (5058), 808-813.
What are the risks and what are the possible benefits? Currently, gene therapy is one of the only ways to change the genetic makeup of an animal or human. Also, the chance of gene therapy being successful in animals is fifty percent, while in humans it is five percent. Human Genetics Alert believes “Once we begin to consciously design ourselves, we will have entered a completely new era of human history, in which human subjects, rather than being accepted as they are, will become just another kind of object, shaped according to parental whims and market forces”. HGA provides background information on the currently available resources used in Genetic Engineering.