Topic: Nuclear Medicine involves radioactive isotopes produced in reactors. What is useful about this technology? Who regulates the production?
Nuclear medicine is a part of medical imaging that operates with small amount of radioactive materials to find out and diagnose different types of diseases.1 As this technology helps to cure many diseases and provides many benefits in human bodies, it also leaves out many risks. The purpose of this report is to evaluate the benefits and risks of nuclear medicine.
Benefits associated with Nuclear Medicine:
• The procedures of nuclear medicine imaging are non-invasive.1 Because of this imaging technology, different medical instruments are not used into the body while detecting or diagnosing a disease. In this way, patients do not feel any pain of the medical instruments as different radioactive materials are used to determine the disease in their body.
• Nuclear medicine investigation offers information that is unique including on both function and structure and often inaccessible using other imaging procedures.1¬ Nuclear medicine provides the information specifically and accurately about any disease inside the human body. It gives the information about how the infection of a disease is structured and how it is functioned. All in all, the nuclear medicine technology provides very exclusive information that is unreachable with the other imaging technologies.
• For most of the diseases, nuclear medicine scans yield the most effective information that are needed in order to make a diagnosis and to determine proper treatment.1 Nuclear medicine produces the data that are mostly needed for any treatment of a disease. In this way, a surgeon who will be operating a patient can save time to determin...
... middle of paper ...
...e/nuclear-medicine-technologists.htm#tab-3 (Accessed on December 13, 2013).
11. Tc-99m DTPA or MAG3 renal scan. Newcastle Nuclear Medicine. http://www.newcastlenuclearmedicine.com.au/site/index.cfm?display=105591 (Accessed on December 13, 2013).
12. What is the full form of DMSA? Target Study. http://targetstudy.com/knowledge/abbreviation/dmsa.html (Accessed on December 13, 2013).
13. Relative Risks of Nuclear Medicine, 2007. Department of Nuclear Medicine. http://www.petnm.unimelb.edu.au/nucmed/detail/risks.html (Accessed on December 13, 2013).
14. Nuclear Medicine. Kona Community Hospital. http://www.kch.hhsc.org/services/imaging/imaging-nuclear-medicine/default.aspx (Accessed on December 13, 2013).
15. Positron emission tomography (Pet) scan, 2007. MayoClinic.com http://www.riversideonline.com/health_reference/Articles/CA00052.cfm (Accessed on December 13, 2013).
What needs to be assessed is how these full body scans are produced. It is produced through radiation through computed tomography. And, is the amount of radiation that a patient is receiving necessary. Radiation exposure is harmful. According to the FDA website
When taking a radiograph there are some precautions that can be taken to reduce some of the radiation that can be exposed to a patient, what would be used on all patients is call a lead apron and thyroid collar, these aprons are used to protect the patients that may be a bit more radiosensitive and also may give the patient a little of reassurance that they will be protected. “Radiosensitivity is the relative susceptibility of cells, tissues, organs, organisms, or other substances to the injurious action of radiation.”
Nuclear energy is used today for energy supply and about 15% of the world’s energy comes from nuclear power plants some forms of medicine such as nuclear medicine rely solely on nuclear technology. This technology was developed through the process of creating the first atomic bomb and would not exist if not for the advancements made during the Manhattan project.
The role of the radiologist is one that has undergone numerous changes over the years and continues to evolve a rapid pace. Radiologists specialize in the diagnoses of disease through obtaining and interpreting medical images. There are a number of different devices and procedures at the disposal of a radiologist to aid him or her in these diagnoses’. Some images are obtained by using x-ray or other radioactive substances, others through the use of sound waves and the body’s natural magnetism. Another sector of radiology focuses on the treatment of certain diseases using radiation (RSNA). Due to vast clinical work and correlated studies, the radiologist may additionally sub-specialize in various areas. Some of these sub-specialties include breast imaging, cardiovascular, Computed Tomography (CT), diagnostic radiology, emergency, gastrointestinal, genitourinary, Magnetic Resonance Imaging (MRI), musculoskeletal, neuroradiology, nuclear medicine, pediatric radiology, radiobiology, and Ultrasound (Schenter). After spending a vast amount of time on research and going to internship at the hospital, I have come to realize that my passion in science has greatly intensified. Furthermore, both experiences helped to shape up my future goals more prominently than before, which is coupled with the fact that I have now established a profound interest in radiology, or rather nuclear medicine.
Radiology is one of the few so-called “physical-science”-based fields of medicine, making it a challenging and rewarding application of an academic interest in science. It combines advanced knowledge of human physiology with principles of atomic physics and nuclear decay, electricity and magnetism, and both organic and inorg...
All in all, MRI is a great imaging modality to properly diagnose a patient. MRI has many advantages and does not use any type of radiation. Even though MRI has been around for about a century it has gained a lot of advancement in the image quality. MRI allows a wide variety of anatomy to be imaged such as soft tissue, spine work, and organs. Like any imaging modality MRI does have a couple of disadvantages, but the advantages out way the risks. MRI will continue to improve and will be one of the best imaging modalities in the medical field.
As a starting point in CT diagnostic imaging the form of radiation used to provide an image are x-rays photons , this can also be called an external radiation dose which detect a pathological condition of an organ or tissue and therefore it is more organ specific. However the physics process can be described as the radiation passes through the body it is received by a detector and then integrated by a computer to obtain a cross-sectional image (axial). In this case the ability of a CT scanner is to create only axial two dimensional images using a mathematical algorithm for image reconstruction. In contrast in RNI the main property for producing a diagnostic image involves the administration of small amounts of radiotracers or usually called radiopharmaceutical drugs to the patient by injection or oral. Radio meaning the emitted of gamma rays and pharmaceutical represents the compound to which a nuclide is bounded or attached. Unlike CT has the ability to give information about the physiological function of a body system. The radiopharmaceutical often referred to as a nuclide has the ability to emit ga...
To begin with, how has technology changed the field of radiology? Since the discovery of X-radiation there has been a need and desire for studying the human body and the diseases without actually any intervention. Over the past fifty years there has been a revolution in the field of radiology affecting medicine profoundly. “The ability to produce computers powerful enough to reconstruct accurate body images, yet small enough to fit comfortably in the radiology department, has been the major key to this progress”(Gerson 66). The core of radiology’s vast development consists of four diagnostic techniques: computed tomography (CT), digital subtraction angiography (DSA), ultrasonography, and magnetic resonance imaging (MRI). These methods of diagnostic imaging provide accurate information that was not seen before. Amid this information advancement, radiologists have broadened their role of diagnostician. Gerson writes, “With the advent of computer-enhanced imagery and new interventional techniques, these physicians are able to take an active part in performing therapeutic procedures”(66). A radiology breakthrough in 1972 was computed tomography discovered by Godfrey Hounsfield and Allan Cormack. Unlike standard radiography, computed tomography would spin the X-ray tube 360 degrees and inversely another 360 degrees while the patient ta...
Although no adverse health effects have been directly linked to low-dose radiation exposure, the medical community is playing it safe with regards to radiation. Most physicians are very careful about ordering radiologic tests. They should not order a study unless it will improve patient care. If you have a question about the importance or the necessity of a radiologic test that has been ordered for you, be sure to ask your physician.
CTscans stands for “Computed Tomography”. It is a way of looking inside your body using a special camera. It is an advanced scanning x-ray and computer system that makes detailed pictures of horizontal cross-sections of the body, or the part of the body that is x-rayed. A CT scan is a diagnostic test that combines the use of x-ray with computer technology. A series of x-beams from many different angles are used to get these cross-sectional images of the patient’s body. In a computer, these pictures are assembled into a 3-dimentianal picture that can display organs, tissues, bones, and any such thing. It can even show ducts, blood vessels and tumors. One of the advantages of CT is that it clearly shows soft tissue structures (such as brain), as well as dense tissue structure (such as bone). The pictures of a Ctscanner are a lot more detailed than the pictures of a regular X-ray machine. It can make pictures of areas protected or surrounded by bones, which a regular X-ray machine can not. Because of this, a CT scanner is said to be 100 times as affective and clever as an ordinary X-ray, and can therefore diagnose some diseases a lot earlier and quicker. It is recent technology that has made it possible to accurately scan objects into a computer in three dimensions, even though the machines and ideas were developed in the 1970s. In the 70s doctors started to use this new type of machine that could give detailed pictures of organs that the older type of x-ray, machine could not give.
Radioisotopes have helped create advanced imaging techniques. Beforehand, X rays could only provide so much information such as broken bones, abnormal growths, and locating foreign objects in the body. Now it is possible to obtain much more information from medical imaging. Not only can this advanced imaging give imaging of tiny structures in the body, but it can also provide details such as cancerous cells and damaged heart tissue from a heart...
“The half-life of a radioisotope is the time required for half the atoms in a given sample to undergo radioactive decay; for any particular radioisotope, the half-life is independent of the initial amount of...
Images of human anatomy have been around for more than 500 years now. From the sketches created by Leonardo da Vinci, to the modern day Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) scan, images have played a great role in medicine. Evolution in medical imaging brought together people from various disciplines such as Biology, Physics, Chemistry and Mathematics, a collaboration which has further contributed to healthcare as a whole. Modern day imaging improves medical workflows by facilitating a non-invasive insight into human body, accurate and timely diagnostics, and persistence of an analysis.
Nuclear power, the use of exothermic nuclear processes to produce an enormous amount of electricity and heat for domestic, medical, military and industrial purposes i.e. “By the end of 2012 2346.3 kilowatt hours (KWh) of electricity was generated by nuclear reactors around the world” (International atomic energy agency Vienna, 2013, p.13). However, with that been said it is evident that the process of generating electricity from a nuclear reactor has numerous health and environmental safety issues.
Medical tools in the modern day are almost all made with small, programmed computers inside. “Medical imaging is a vast field that deals with the techniques to create images of the human body. Many of the modern methods of scanning and imaging are largely based on computer technology” ("Importance of Computers in Medicine."). We have been able to apply many of the advanced medical imaging techniques, over the years, thanks to developments in computer science. Magnetic quality imaging uses computer software. To obtain high-resolution images, doctors ...