Monosaccharides

2337 Words5 Pages

Monosaccharide

also called SIMPLE SUGAR, any of the basic compounds that serve as the building blocks of carbohydrates. Monosaccharides are polyhydroxy aldehydes or ketones; that is, they are molecules with more than one hydroxyl group (-OH), and a carbonyl group (C=O) either at the terminal carbon atom (aldose) or at the second carbon atom (ketose). The carbonyl group combines in aqueous solution with one hydroxyl group to form a cyclic compound (hemi-acetal or hemi-ketal). Monosaccharides are classified by the number of carbon atoms in the molecule; trioses have three, tetroses four, pentoses five, hexoses six, and heptoses seven. Most contain five or six. The most important pentoses include xylose, found combined as xylan in woody materials; arabinose from coniferous trees; ribose, a component of ribonucleic acids and several vitamins; and deoxyribose, a component of deoxyribonucleic acid. Among the most important aldohexoses are glucose, mannose, and galactose; fructose is a ketohexose.
Several derivatives of monosaccharides are important. Ascorbic acid (vitamin C) is derived from glucose. Important sugar alcohols (alditols), formed by the reduction of (i.e., addition of hydrogen to) a monosaccharide, include sorbitol (glucitol) from glucose and mannitol from mannose; both are used as sweetening agents. Glycosides derived from monosaccharides are widespread in nature, especially in plants. Amino sugars (i.e., sugars in which one or two hydroxyl groups are replaced with an amino group, -NH2) occur as components of glycolipids and in the chitin of arthropods.

carbohydrateClasses of carbohydrates Monosaccharides Sources The most common naturally occurring monosaccharides are D-glucose, D-mannose, D-fructose, and D-galactose among the hexoses, and D-xylose and L-arabinose among the pentoses. In a special sense, D-ribose and 2-deoxy-D-ribose are ubiquitous because they form the carbohydrate component of ribonucleic acid (RNA) and deoxyribonucleic acid (DNA), respectively; these sugars are present in all cells as components of nucleic acids. Sources of some of the naturally occurring monosaccharides are listed in Table 2.D-xylose, found in most plants in the form of a polysaccharide called xylan, is prepared from corncobs, cottonseed hulls, or straw by chemical breakdown of xylan. D-galactose, a common constituent of both...

... middle of paper ...

...his step, syrup preparations are crystallized to form table sugar. Successive "crops" of sucrose crystals are "harvested," and the later ones are known as brown sugar. The residual syrupy material is called either cane final molasses or blackstrap molasses; both are used in the preparation of antibiotics, as sweetening agents, and in the production of alcohol by yeast fermentation.Sucrose is formed following photosynthesis in plants by a reaction in which sucrose phosphate first is formed.The disaccharide trehalose is similar in many respects to sucrose but is much less widely distributed. It is composed of two molecules of -D-glucose and is also a nonreducing sugar. Trehalose is present in young mushrooms and in the resurrection plant (Selaginella); it is of considerable biological interest because it is also found in the circulating fluid (hemolymph) of many insects. Since trehalose can be converted to a glucose phosphate compound by an enzyme-catalyzed reaction that does not require energy, its function in hemolymph may be to provide an immediate energy source, a role similar to that of the carbohydrate storage forms (i.e., glycogen) found in higher animals.

Open Document