Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Igneous rocks
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Igneous rocks
Igneous rocks are formed from the molten liquid minerals that lie below the Earth's crust. They're formed from magma that cools beneath the Earth's surface or from lava that cools upon the Earth's surface. These two methods of igneous rock formation are known as intrusive and extrusive, respectively. Intrusive igneous formations can be forced to the surface of the Earth where they can exist as masses of rock known as plutons. When rocks are pushed deep under the Earth's surface, they may melt into magma. If the conditions no longer exist for the magma to stay in its liquid state, it will cool and solidify into an igneous rock. A rock that cools within the Earth is called intrusive or plutonic and will cool very slowly, producing a coarse-grained texture such as the rock granite. As a result of volcanic activity, magma (which is called lava when it reaches Earth's surface) may cool …show more content…
Weathering and erosion break the original rock down into smaller fragments and carry away dissolved material. This fragmented material accumulates and is buried by additional material. While an individual grain of sand is still a member of the class of rock it was formed from, a rock made up of such grains fused together is sedimentary. Sedimentary rocks can be formed from the lithification of these buried smaller fragments (clastic sedimentary rock), the accumulation and lithification of material generated by living organisms (biogenic sedimentary rock - fossils), or lithification of chemically precipitated material from a mineral bearing solution due to evaporation (precipitate sedimentary rock). Clastic rocks can be formed from fragments broken apart from larger rocks of any type, due to processes such as erosion or from organic material, like plant remains. Biogenic and precipitate rocks form from the deposition of minerals from chemicals dissolved from all other rock
The shelf-edge includes carbonate-to-clastic facies transition and tectonic uplift and erosion of the carbonates followed by deposition of the clastics. The Saint Peter Sandstone is a well-sorted, almost pure quartz arenite deposited during a major mid-Ordovician low stand. Clastics spread across an exposed carbonate platform by transportation. This is shown by the well-rounded, frosted texture of the quartz grains.
Quartzite is a non-foliated metamorphic rock. This rock is intrusive and forms when exposed to extreme amounts of heat and pressure. Over a billion years ago, there was an ocean where Kamiak Butte is. This ocean floor was made of sand, as time went on oceans receded and the exposed sand underwent processes that turned it into sandstone – or as we learned in class the process of lithification. Years later, this sandstone would morph into the quartzite that is present now.2
Soon after the sea reached longer distance westward and the sandy tidal deposits were converted to deep water deposits. Mancos Shale is the name given to represent these deposits, which are comprised of organic material and small particulates. Another interesting fact to note is that this type of sediment consists of fossils. These remains can include prehistoric shell fish, shark teeth, and many other types of organisms. The hills seen at the foundation of the mesa in the Montezuma Valley are comprised of gray
Shown in the picture above is volcanic extrusive igneous rock known as andesite. They were imported here to Laguna Beach to help minimize erosion (Merton Hill, p. 10-11). Extrusive Igneous rocks are formed on Earths surface due to lava quickly cooling or mixing with different materials such as ash or cinders from an eruption. There are two different types of extrusive igneous rocks; Plutonic and Volcanic. Andesite is known for being gray in color and being made up of very coarse grainy textures, which make it much harder to break down than sedimentary rocks. Unlike loose gravel and other sediments igneous rocks are known for being able to slow down seismic waves from earthquakes which cause less damage to surface structures.
and Metamorphic rocks can be found. There are also a lot of crusted plates, and violent
Basalt forms due to the partial melting of the layer of the mantle called the asthenosphere. The asthenosphere is the plastic zone of the mantle beneath the rigid lithosphere. Mantle plumes coming from the mesosphere can cause the asthenosphere to melt with heat or even if pressure decreases, which is called decompression melting (Richard 2011). The magma that forms from this melting is mafic magma that solidifies once it reaches the earth’s surface and cools quickly. The above process mainly occurs mainly during intraplate igneous activity which is the main explanation for volcanic activity that occurs a long distance away from a plate boundary. If the tectonic plate above the mantle plume is moving it can create a string of volcanic activity such as in Hawaii. See Fig 2.
7. Refer to Figure 22-6. What name is given to the core of the modern-day North American continent that formed in the Proterozoic?
Super volcanoes are formed when magma rises from the mantle to create a scorching reservoir in the Earth's
Magma is a hot liquid made of melted minerals. Minerals can form crystals when they are cool. Igneous rock can form underground, where the magma cools. slowly. Or, igneous rock can form above ground, where the magma cools.
Convection currents deep in the mantle of the earth, begin to well up towards the surface. As the pressure increases, it sets the crustal plates in motion. There are different kinds of mountains - Volcanic, Folded, Fault-block, and Dome mountains. Volcanic mountains are formed when magma comes up through cracks in the Earth’s crust and explodes out of lava and ash. The Hawaiian volcanoes, Mt. Hood, Mt. Etna, Vesuvius, and Mt. Saint Helens is an example of volcanic mountains.
Ever since the beginning on time, Humans believed the ground is solid and immobile. But this is not true whatsoever. The Earth is every-changing and continually in motion. The stability of the Earth is not at all what we think it is. Thinking about the rotational axis of the Earth, and possibly of what the Earth may become at a certain point in time, has a great influence on understanding all aspects of living things, either in the past, present, or future. The Theory of Plate tectonics is accredited to most of the creations of Mountain Ranges, the Centennial drifting Theory, for earthquakes, and volcanic activity. Plate tectonics and mountains also play a big part in the Earth and its geological features.
Coastal Erosion operates at different rates and different times. Limestone rock is eroded slower than sedimentary rock. The cliff at Muriwai made of sedimentary rock was eroded back to expose 'Fisherman's Rock' - the shore platform which, made of limestone -- tended to erode back slower than the cliff.
The interior structure of the earth is made up of crust, the mantle and core (inner core and outer core). Earthquakes occur on the crust. Crust forms the external layer of the earth surface. On the crust, the plate tectonics forces are in charge of causing the abrupt earth movements. Due to the existence of an immense temperature and concurrent pressure difference in the outer layer and inner layer of the earth, convection currents occur at the mantle. This energy results from overwhelming decomposition of radioactive substances contained by the rocks found at the interior of the earth. The developed convection currents lead to movement of lava; cold lava finds its way to the interior of the earth crust, while the molten lava which is generally hot, leaves the interior of the earth to the outside of the earth crust. These kinds of circulations occur at different locations of the earth surface and consequently results in segmentation of the earth due to movement in different directions.
Volcanoes are formed when magma is expelled from the Earth’s surface, resulting in volcanic eruptions consisting of ash and lava. Over time, the lava cools and forms into rock on the Earth’s surface. Whenever an eruption occurs, the newly-formed rock from the lava layers continuously until the volcano takes its shape. Volcanic eruptions have taken place for thousands of years, and even today, according to the U.S Geological Survey (2010), there are approximately 1500 active volcanoes located throughout the world.