Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Role of enzymes in animals
The effect of temperature on the rate of enzyme activity
Introduction to effects of temperature on enzyme activity
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Role of enzymes in animals
The enzyme is a protein that acts as a catalyst, lowering the activation energy needed for reactions to progress in cells. The reaction can still occur without the presence of the enzyme, but at a much slower rate. Activation energy is considered the minimum amount of energy needed for a chemical reaction to occur, yielding products from a given set of reactants. The shape of enzymes determines its function and which substrate the enzyme binds to and catalyzes is determined by the shape of its binding groove. If the shape is lost possibly due to denaturation, the enzyme cannot function anymore. The substrate is the reactant(s) of the reaction that is/are bound by the enzyme. While an active site is a region of the enzyme where binding to substrate …show more content…
Lactase is at its most active during infancy and is vital for the infant's survival when milk is the main source of nutrition. The enzyme then becomes less active after the weaning phase and in adults this decline in activity is referred to as "lactase non-persistence." Conversely, the lactase persistent state describes when a high level of lactase activity is maintained beyond the weaning phase and throughout life (Mandal, 2013). Based on what I know about the effect of temperature on the enzymatic activity of lactase, if the lactase used in the lab was extracted from human cells, I hypothesize that the enzymes would work according to the human body, at a optimum temperature of 37 degrees Celsius. While I hypothesize that the effect of the pH on the enzymatic activity of lactase it can be used because the optimum pH for it is 2-7, the same as the small intestine. However, if the enzyme was extracted from bacterial cells, the pH would be higher and it could work in the lab. Knowing that lactase is specific for lactose, each enzyme has their own substrate to bind to. I predict that the effect of EDTA will be negative when added to a lactase for a mediated
Data table 1 Well plate Contents Glucose concentration A 3 drops 5% sucrose + 3 drops distilled water Negative B 3 drops milk+3 drops distilled water Negative C 3 drops 5% sucrose +3 drops lactase Negative D 3 drops milk +3 drops lactase 15+ E 3 drops 20% glucose +3 drops distilled water 110 ++ Questions B. In this exercise, five reactions were performed. Of those reactions, two were negative controls and one was a positive control.
For example, if a person had been able to consume lactose products for their life with no problems, but in an unfortunate event had to have a portion of his or her small intestine removed, there would be a change in the number of present lactase enzymes in the stomach. Because the lactase enzyme is stored in the small intestine, the person may now experience lactose intolerance due to the decrease in the presence of lactase. Knowing where the lactase enzyme is stored can aid physicians in understanding what will happen after a procedure or the introduction of a new medication. The experiment was conducted to determine the optimal ph of lactose required to produce the maximum amount of glucose. It was predicted that the optimal ph of lactose would be most efficient at lactose ph 6, and that the lower the ph, the amount of glucose produced would increase
The affects of pH, temperature, and salt concentration on the enzyme lactase were all expected to have an effect on enzymatic activity, compared to an untreated 25oC control. The reactions incubated at 37oC were hypothesized to increase the enzymatic activity, because it is normal human body temperature. This hypothesis was supported by the results. The reaction incubated to 60oC was expected to decrease the enzymatic activity, because it is much higher than normal body temperature, however this hypothesis was not supported. When incubated to 0oC, the reaction rate was hypothesized to decrease, and according to the results the hypothesis was supported. Both in low and high pH, the reaction rate was hypothesized to decrease, which was also supported by the results. Lastly, the reaction rate was hypothesized to decrease in a higher salt concentration, which was also supported by the results.
Enzymes are biomolecules that catalyze or assist chemical reactions. ("Enzyme Information - Disabled World", n.d.,) Without enzymes it would be impossible for an organism to carry out chemical reactions. Enzymes are proteins that carry a chemical reaction for a specific substance or nutrient. For example, the digestive enzymes help food to be broken down so it can be absorbed. Enzymes can either initiate the reaction or speed it up. Substrates are the chemicals that are transformed by enzymes. (Gunsch & Foster, 2014) Reactants are the chemicals in the absence of enzymes. Metabolic pathways that occur in a cell are determined by a set of enzymes which are selective for their substrates and catalyze only a few reactions among the many possibilities.
Catalysis occurs because substance S fits precisely into surface of the enzyme E, so this reaction and no others are speeded up. Diagram showing an enzyme catalsying the breakdown of its substrate into two product molecules. As can be seen from the diagram, if the enzyme changes shape, the active site (the area where the substrate reacts) would no longer be able to fit the substrate. This would mean the enzyme would lose its effect; the substrate would not break down.
This hurdle is called the activation energy of the reaction. [IMAGE] By decreasing the activation energy, more substrate is changed to product in a certain amount of time. That is, the enzyme increases the rate of the reaction. [IMAGE] The activity of catalase can be measured by finding the rate of which the oxygen gas is released from the breakdown of Hydrogen Peroxide.
Enzymes are proteins that increase the speed of reactions in cells. They are catalysts in these reactions which means that they increase the speed of the reaction without being consumed or changed during the reactions. Cofactors are required by some enzymes to be able to carry out their reactions by obtaining the correct shape to bind to the other molecules of the reaction. Chelating agents are compounds that can disrupt enzyme reactions by binding to metallic ions and change the shape of an enzyme. Catechol is an organic molecule present under the surface of plants. When plants are injured, catechol is exposed to oxygen and benzoquinone is released because of the oxidation of catechol. Catecholase aids in the reaction to produce
shape. The sand is a sand. Their hydrophilic side-chains on the outside of the molecule. make them soluble in water. Enzymes can catalyze both anabolic and catabolic reactions within an organism.
Proteins are one of the main building blocks of the body. They are required for the structure, function, and regulation of the body’s tissues and organs. Even smaller units create proteins; these are called amino acids. There are twenty different types of amino acids, and all twenty are configured in many different chains and sequences, producing differing protein structures and functions. An enzyme is a specialized protein that participates in chemical reactions where they serve as catalysts to speed up said reactions, or reduce the energy of activation, noted as Ea (Mader & Windelspecht).
In biology class, we were learning about enzymes. Enzymes are proteins that help catalyze chemical reactions in our bodies. In the lab, we were testing the relationship between the enzyme catalase and the rate of a chemical reaction. We predicted that if there was a higher percentage of enzyme concentration, then the rate of chemical reaction would increase or it would take less time. We placed 1 ml of hydrogen peroxide into four depressions. Underneath the first depression, we place 1 ml of 100% catalase and make 50% dilution with 0.5 ml of water. We take 50% of that solution and dilute with 0.5 ml of water and we repeat it two more times. there were four depressions filled with catalase: 100%, 50%, 25% , 12.5 % with the last three diluted
The three-dimensional contour limits the number of substrates that can possibly react to only those substrates that can specifically fit the enzyme surface. Enzymes have an active site, which is the specific indent caused by the amino acid on the surface that fold inwards. The active site only allows a substrate of the exact unique shape to fit; this is where the substance combines to form an enzyme- substrate complex. Forming an enzyme-substrate complex makes it possible for substrate molecules to combine to form a product. In this experiment, the product is maltose.
Enzymes are types of proteins that work as a substance to help speed up a chemical reaction (Madar & Windelspecht, 104). There are three factors that help enzyme activity increase in speed. The three factors that speed up the activity of enzymes are concentration, an increase in temperature, and a preferred pH environment. Whether or not the reaction continues to move forward is not up to the enzyme, instead the reaction is dependent on a reaction’s free energy. These enzymatic reactions have reactants referred to as substrates. Enzymes do much more than create substrates; enzymes actually work with the substrate in a reaction (Madar &Windelspecht, 106). For reactions in a cell it is important that a specific enzyme is present during the process. For example, lactase must be able to collaborate with lactose in order to break it down (Madar & Windelspecht, 105).
Enzymes are necessary for life to exist the way it does. Enzymes help our bodies carry out chemical reactions at the correct speed. Catalase is one such enzyme, “Catalase is a common enzyme found in nearly all living organisms exposed to oxygen (such as bacteria, plants, and animals). It catalyzes the decomposition of hydrogen peroxide to water and oxygen”.\(Wikipedia). In other words catalase speeds up the breaking down of hydrogen peroxide, which is a byproduct of reactions in our body. Hydrogen peroxide is very common in our body but, “If it were allowed to build up it would kill us”(Matthey).This shows how necessary enzymes such as catalase to life. Without enzymes reactions that take place in our body could be affected greatly. In our
Enzymes are protein molecules that are made by organisms to catalyze reactions. Typically, enzymes speeds up the rate of the reaction within cells. Enzymes are primarily important to living organisms because it helps with metabolism and the digestive system. For example, enzymes can break larger molecules into smaller molecules to help the body absorb the smaller pieces faster. In addition, some enzyme molecules bind molecules together. However, the initial purpose of the enzyme is to speed up reactions for a certain reason because they are “highly selective catalysts” (Castro J. 2014). In other words, an enzyme is a catalyst, which is a substance that increases the rate of a reaction without undergoing changes. Moreover, enzymes work with
The type seen throughout the human body involve enzyme catalysis. Enzymes are present throughout many key bodily processes and keep the body from malfunctioning. An enzyme catalyzes a reaction by having the substrate bind to its active site.2 This is known as the Lock and Key Theory, which states that only the correctly oriented key (substrate) fits into the key hole (active site) of the lock (enzyme).2 Although this theory makes sense, not all experimental data has explained this concept completely.2 Another theory to better accurately explain this catalysis is known as the Induced-Fit Theory.2 This theory explains how the substrate determines the final form of the enzyme and shows how it is moderately flexible.2 This more accurately explains why some substrates, although fit in the active site, do not react because the enzyme was too distorted.2 Enzymes and substrates only react when perfectly aligned and have the same