Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Watson and crick discovery essay
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Watson and crick discovery essay
Crick discovered the structure of DNA in 1953 and others discovered the genetic code a few years after. The old idea of genes as beads on a string, chromosomes, seemed to gain its vindication from the Watson and Crick model. Each of the three nucleotides in the DNA codes for an amino acid , a string of amino acids makes a protein. Many genes are separated by DNA sequences of nucleotides that are not transcribed into RNA. Proteins are coded by partial sequences on two or more chromosomes. Only a small percentage of DNA codes for proteins are higher than the organisms. In humans DNA codes for proteins are only one percent but not higher than two percent. Many of the rest contain sequences that are repeated over and over again.
Horses represent
The PBS documentary “Nova – Cracking Your Genetic Code” tells about the genome sequencing technology: its current possibilities, advantages, disadvantages and future potential. The system became cheaper, faster and more available since the first human genome was fully sequenced in 2000. Modern companies use the technology to provide clients with the information about their genes and impacts they can have on owners’ health. Hospitals can provide more accurate diagnosis and personalized treatments with the aid of the genome sequencing. The video shows several examples of these benefits. But it mentions concerns about the quality of services, risks of exaggerated
Recombinant DNA technology: Sub cloning of cDNA molecule CIH-1 into plasmid vector pUC19, transformation of XLI-Blue Ecoli & restriction mapping.
The molecule consisted of a double helix with phosphates, deoxyribose sugar molecules, and nitrogenous bases. If the spirals were split, the DNA could replicate, which explained why genes were transferred from parents to their children. Additionally, the order of compounds on the DNA indicated that there was a unique ‘code’ on each strand. Watson and Crick believed that this ‘code’ was translated into specific proteins. , ,
In the article, DNA Fingerprinting: Cracking Our Genetic “Barcode” by Elaine N. Marieb, she describes the process and uses of DNA fingerprinting. The importance of DNA is very helpful because it makes it easier to identify different individuals through their genetic material. In another interesting article, Interface Facts by Katie L. Burke, she mainly focuses on internet video games that could be an effective method for scientific research for scientists and non-scientists. DNA and Technology have emerged and are a great benefit to humans to help find matches such as long-relatives, a murderer in a case, and personal background information whether alive or deceased. Also DNA and Technology can be useful for public awareness reasons too.
In April of 1953, James Watson and Francis Crick published a game changing paper. It would blow the mind of the scientific community and reshape the entire landscape of science. DNA, fully knows as Deoxyribonucleic Acid is the molecule that all genes are made of. Though it is a relatively new term with regard to the age of science, the story of DNA and the path to its discovery covers a much broader timeframe and had many more contributors than James Watson and Francis Crick. After reading the paper the audience should have a better understanding of what DNA is, the most important experiments that contributed to its ultimate discovery and the names and contributions of the lesser-known scientists that helped Watson and Crick turn their idea
The unique insight brought by the ENCODE project has lead to several revolutionary ideas for the inter workings of genetics on the molecular scale; however, there has been much controversy over the projects findings throughout the scientific community. The ENCODE project states “The vast majority (80.4%) of the human genome participates in at least one biochemical RNA-and/or chromatin-associated event in at least one cell type” (The ENCODE Project Consortium). This statement claims the functionality of the human genome as a whole and is the core theme that will be analyzed.
Deoxyribo Nucleic Acid (DNA) is a chromosome found in the nucleus of a cell, which is a double-stranded helix (similar to a twisted ladder). DNA is made up of four bases called adenine (A), thymine (T), guanine (G), and cytosine (C), that is always based in pairs of A with T and G with C. The four bases of A, C, G, and T were discovered by Phoebus Levene in 1929, which linked it to the string of nucleotide units through phosphate-sugar-base (groups). As mention in Ananya Mandal research paper, Levene thought the chain connection with the bases is repeated in a fix order that make up the DNA molecu...
The essential component of life can be acknowledged and is made up of a nucleic acid known as DNA. DNA is the abbreviated form for the word deoxyribonucleic acid and it is the “carrier of genetic information” (McMurry, Ballantine, Hoeger, & Peterson, 1992, pg. 775). DNA contains the genetic instructions that are needed for an organism to develop, survive, and replicate, as it plays a crucial role in living systems that makes each species unique and distinctive. The multifaceted material is stored in every cell of every living organisms and it contains information about our nature, appearance, performance, etc. With the instructions that it contains, DNA is passed from the adult organism to their offspring during reproduction. (McMurry, Ballantine, Hoeger, & Peterson, 1992, pg.777).
The first and primary contribution to solving the DNA structure was the relationship of Crick and Watson. Without their teamwork and determination, another scientist would have discovered the structure before them. One of Crick’s bigger contributions was discovering the gene is self-replicating. After talking with John Griffith, Crick came up with the idea that the gene is self-replicating, meaning the gene has the ability “to be exactly copied when the chromosome number doubles during cell division”(126). With further discussion with Griffith, Francis believed that DNA replication involved specific attractive forces between the flat surfaces of the bases (128). One of Watson’s major contributions was after seeing the B form of DNA by Franklin, Watson knew that the structure of DNA was two-chained and that led to the building of the model of DNA (171). Also through research, Watson became aware that adenine and thymine pair together and are held by two hydrogen bonds that were identical in shape to the guanine and cytosine pair held together by at least two hydrogen bonds (194). This discovery showed that the two chains of DNA are complementary to each other. With these individual contributions coming together, Watson and Crick successfully were able to piece together the structure of DNA.
strands which make up the letters of a genetic code. In certain regions of a DNA strand
DNA – the very molecule that defines who we are. It is still fascinating that a molecule that is so small that is not visible to the naked eye determines not just our physical appearance but also our mental wellbeing. Over 60 years, the discovery of the double helix DNA had impacted various fields relating to Biology and Chemistry, contributing to the advancement of technology and subsequently mankind too.
The identification of a substance/phenomenon/condition(s) is the first step toward a new discovery or invention of substantial application (human or otherwise). In the light of this fact, the knowledge of the discovery of DNA is vital to appreciate the beauty of evolution of the events that led to the discovery of DNA. Unlike the common belief that DNA was discovered by the American biologist James Watson and English physicist Francis Crick, the genetic material was first identified by the Swiss physiological chemist Friedrich Miescher in the 1860s. He named them “nuclein”. While having an intention of separating and identifying the proteins present in the white blood cells, he discovered a material inside the white blood cells that were similar to proteins but having high phosphorus content. Sensing the importance of his findings, Miesher wrote “It seems probable to me that a whole family of such slightly varying phosphorous-containing substances will appear, as a group of nucleins, equivalent to proteins”. It was only in 1953, that Watson and Crick put together pieces of experimental information by various investigators to bring forth the three dimensional structure of DNA. Although, various improvisations and extensions have been brought forth to the Watson Crick model, but the four major propositions still remain the same :
DNA (deoxyribonucleic acid) is a self-replicating molecule or material present in nearly all living organisms as the main constituent in chromosomes. It encodes the genetic instructions used in the development and functioning of all known living organisms and many viruses. Simply put, DNA contains the instructions needed for an organism to develop, survive and reproduce. The discovery and use of DNA has seen many changes and made great progress over many years. James Watson was a pioneer molecular biologist who is credited, along with Francis Crick and Maurice Wilkins, with discovering the double helix structure of the DNA molecule. The three won the Nobel Prize in Medicine in 1962 for their work (Bagley, 2013). Scientist use the term “double helix” to describe DNA’s winding, two-stranded chemical structure. This shape looks much like a twisted ladder and gives the DNA the power to pass along biological instructions with great precision.
The Use of Recombinant DNA Technology Recombinant DNA technology is the technology of preparing recombinant DNA in vitro by cutting up DNA molecules and splicing together fragments from more than one organism.(1) This is the process of using recombinant DNA technology to enable the rapid production of human protein from a single gene of insulin. Firstly the single gene required must be isolated. This can be done three ways: Either by working backwards from the protein- Finding the amino acid sequence for the protein needed, the order of bases can be established using known genetic code. New DNA can be made from this sequence of bases resulting in artificial gene made from complementary DNA.
...f the structure of DNA by James Watson and Francis Crick in 1953 that was extremely influential for future researchers. They determined that DNA was a double helix structure composed of base pairings, with a sugar phosphate backbone. This model explained how “genes can duplicate themselves [and] would eventually lead to our current understanding of many things, from genetic disease to genetic engineering” (Salem).