Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Acid base titration
Acid base titration
Chemistry lab acids and bases
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Acid base titration
In this experiment, an acid (Benzoic acid), a base (Ethyl 4- Aminobenzoate) and a neutral compound (9-Fluorenone) were extracted from a mixture. HCl was the acid used to separate the base from the mixture, by forming an organic layer, which contained the acid, the neutral compound, and an aqueous layer that contained the base. NaOH was the base that was used to separate the acid from the neutral compound, which resulted in an organic layer containing the neutral compound and an aqueous layer containing the acid. After this a base was then added to the first aqueous layer containing the base, and an acid added to the second aqueous layer containing the acid. The percent recovery of each compound was then evaluated. The basic component, Ethyl
4-Aminobenzoate, had a percent recovery of 82.21%. The acidic component, Benzoic acid, had a percent recovery of 47.37%. The neutral component, 9-Fluorenone, had a percent recovery of 50.22%. The basic component – Ethyl 4-Aminobenzoate had the highest percent recovery. One reason that could explain the low percent recoveries for the acidic and neutral component could be that additional water could have remained in the neutral extraction that was not completely removed by the sodium sulfate, which skewed the results.
The unknown bacterium that was handed out by the professor labeled “E19” was an irregular and raised shaped bacteria with a smooth texture and it had a white creamy color. The slant growth pattern was filiform and there was a turbid growth in the broth. After all the tests were complete and the results were compared the unknown bacterium was defined as Shigella sonnei. The results that narrowed it down the most were the gram stain, the lactose fermentation test, the citrate utilization test and the indole test. The results for each of the tests performed are listed in Table 1.1 below.
The theoretical yield of the m-nitrobenzoate was de-termined to be 4.59 grams. The actual amount of crude product was determined to be 3.11 grams. The percent yield of the crude product was determined to be 67.75 %. The actual amount of pure product formed was found to be 4.38 grams. The percent yield of the pure product was determined to be 95.42%. Regarding the thin layer chromatography, the line from the solvent front was 8 centimeters.
The purpose of this experiment was to learn and preform an acid-base extraction technique to separate organic compounds successfully and obtaining amounts of each component in the mixture. In this experiment, the separation will be done by separatory funnel preforming on two liquids that are immiscible from two layers when added together. The individual components of Phensuprin (Acetylsalicylic acid, Acetanilide, and Sucrose as a filler) was separated based upon their solubility and reactivity, and the amount of each component in the mixture was obtained. Also, the purity of each component will be determined by the melting point of the component.
The goal of this two week lab was to examine the stereochemistry of the oxidation-reduction interconversion of 4-tert-butylcyclohexanol and 4-tert-butylcyclohexanone. The purpose of first week was to explore the oxidation of an alcohol to a ketone and see how the reduction of the ketone will affect the stereoselectivity. The purpose of first week is to oxidize the alcohol, 4-tert-butylcyclohexanol, to ketone just so that it can be reduced back into the alcohol to see how OH will react. The purpose of second week was to reduce 4-tert-butylcyclohexanol from first week and determine the effect of the product's diastereoselectivity by performing reduction procedures using sodium borohydride The chemicals for this lab are sodium hypochlorite, 4-tert-butylcyclohexanone
The isomerization procedure was done in order to create dimethyl fumarate from dimethyl maleate. Dimethyl maleate and dimethyl fumarate are cis and trans isomers, respectively. This procedure was done via a free radical mechanism using bromine. The analysis of carvones reaction was done in order to identify the smell and optical rotation of the carvone samples that were provided. The odor was determined by smelling the compound and the optical rotation was determined using a polarimeter.
Alcohol, which is the nucleophile, attacks the acid, H2SO4, which is the catalyst, forming oxonium. However, the oxonium leaves due to the positive charge on oxygen, which makes it unstable. A stable secondary carbocation is formed. The electrons from the conjugate base attack the proton, henceforth, forming an alkene. Through this attack, the regeneration of the catalyst is formed with the product, 4-methylcyclohexene, before it oxidizes with KMnO4. In simpler terms, protonation of oxygen and the elimination of H+ with formation of alkene occurs.
In order to separate the mixture of fluorene, o-toluic acid, and 1, 4-dibromobenzene, the previously learned techniques of extraction and crystallization are needed to perform the experiment. First, 10.0 mL of diethyl ether would be added to the mixture in a centrifuge tube (1) and shaken until the mixture completely dissolved (2). Diethyl ether is the best solvent for dissolving the mixture, because though it is a polar molecule, its ethyl groups make it a nonpolar solvent. The compounds, fluorene and 1, 4-dibromobenzene, are also nonpolar; therefore, it would be easier for it to be dissolved in this organic solvent.
Benzyl bromide, an unknown nucleophile and sodium hydroxide was synthesized to form a benzyl ether product. This product was purified and analyzed to find the unknown in the compound. A condenser and heat reflux was used to prevent reagents from escaping. Then the solid product was vacuum filtered.
The objective of this experiment was to perform extraction. This is a separation and purification technique, based on different solubility of compounds in immiscible solvent mixtures. Extraction is conducted by shaking the solution with the solvent, until two layers are formed. One layer can then be separated from the other. If the separation does not happen in one try, multiple attempts may be needed.
Performing this experiment, we used the technique called Acid-Base extraction to isolate Eugenol, which is one of the main ingredients of clove oil. Acid-Base extraction is the most efficient method for isolating organic component; it is efficient because it purifies the acid and base mixture based on their chemical identities. We have seen throughout this experiment that acid and base play an important role, when it comes to solubility in water. Our basic knowledge of acid and base is acid is a proton donor and base is a proton acceptor. This ideology helps us to understand why organic compounds are not soluble in water. When compounds tend to be insoluble, we have to use acid and base reaction, to change its solubility. The changes that occurred
When benzoic acid paired with 1.0 M NaOH, it was observed that both compounds were soluble. Upon the addition of 6.0 M HCl into this solution, benzoic acid became insoluble. Benzoic acid was also insoluble in 1.0 M HCl. Ethyl 4-aminobenzoate was found to be insoluble in 1.0 M NaOH and soluble in 1.0 M HCl. But then, after adding 6.0 M NaOH into the test tube C (mixture of ethyl 4-aminobenzoate and 1.0 M HCl), a white powdery solid (undissolved compound) was formed. These demonstrate that both the acid and base became more soluble when they were ionized and less soluble when they were
Based on the Rf values, the isolated samples can also be considered pure. The Rf value for the reference benzoic acid was calculated to be 0.33, and the value of the benzoic acid was 0.52, there is a difference in these two values, but this was due to smearing or streaking, but there are similarities in the spots. The Rf value for the reference benzocaine was calculated to be 0.31, and the Rf of the benzocaine was 0.29, which indicated very similar vales, which indicated that the isolated sample was indeed pure, and very similar to the reference compound.
Ensure gloves are worn at all times when handling strong acids and bases within the experiment of the preparation of benzocaine. 4-aminobenzoic acid (3.0g, 0.022 moles) was suspended into a dry round-bottomed flask (100cm3) followed by methylated sprits (20 cm3). Taking extra care the concentrated sulphuric acid of (3.0 cm3, 0.031 moles) was added. Immediately after the condenser was fitted on, and the components in the flask were swirled gently to mix components. It should be ensured that the reactants of the concentrated sulphuric acid and the 4-aminobenzoic acid were not clustered in the ground glass joint between the condenser itself and the flask. In order to heat the mixture to a boiling point, a heating mantle was used and then further left for gently refluxing for a constituent time of forty minutes. After the duration of the consistent forty minutes the rou...
The Goldman-Fristoe Test of Articulation, 3rd edition (GFTA-3) assesses children’s articulation of consonant sounds of Standard American English. In this test, it provides a sampling of spontaneous and imitative sound production. A child is attempting to produce and imitate the target phonemes in their appropriate age. Raw score is the total number of articulation errors. Standard scores are shown that an average range, confidence interval as well as percentile.
Preparing Benzoic Acid from Benzylalcohol Planning (a) Problem The aim of this experiment is to synthesize benzioc acid, with the highest possible yield, by oxidizing benzylalcohol. Hypothesis We expect the percentage yield to be about 50% due to several processes such as cooling and filtering. Possible Variables - Time - Temperature (of water) - Filter Planning (b) Apparatus/ Materials - Round bottomed flask under reflux - benzylalcohol - HCl - Na2O4 - Büchner funnel - beakers - sodium carbonate Procedure The benzioc acid is synthesized by heating benzylalcohol in a round bottomed flask under reflux. In addition to that, we use Na2O4 as a oxidizing agent. After that, we use HCl to precipitate it.