Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Heat transfer mechanism
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Heat transfer mechanism
ABSTRACT A Heat Exchanger is a device use for the heat transfer from one fluid to another, whether the fluids are separated by a solid wall so that they never mix or the fluids are directly in contact. The heat exchanger is widely used in different industries such as process, petroleum refining, chemicals and paper, power generation, chemical processing, A.C, refrigeration, and a food processing applications. Etc. Various Enhancement methods are used to increase performance of heat exchanger such as treated surfaces, rough surfaces etc.
CHAPTER 1
1.1 INTRODUCTION
Double pipe heat exchanger is used in chemical industry. When to construct this type of heat exchanger, the size of material that is considered since it affected the overall heat transfer. Basically the heat exchanger has two types that are parallel flow heat exchanger, counter flow heat exchanger and efficiency of counter flow heat exchanger is high than the parallel flow heat exchanger. So it is widely used. After few years of research the fins has introduce in heat exchangers for improve performance.
The fins increase the effective area of a surface than heat transfer will increase. past few years lot of modification are implemented in fin design for increase heat transfer rate in the heat exchanger. The reason for
…show more content…
In experimental analysis result was completed and the effect on temperature reduction and the pressure drop in the finned tube and shell side was observed. In present the heat transfer rate and efficiency is low by using finned tube. Compare both existing and new model type heat exchanger over all heat transfer rate is increased and also the efficiency of the heat exchanger for semi circle fins is increase d by 3%, and for hexagonal fins is increased by 6% of finned tube heat exchanger. So the hexagonal fin is used than the semicircle
Growing thick feathers/fur- therefore stopping heat loss by convection as fur and feathers trap air which then acts as an insulator, fat/blubber which as an insulator, oily or greasy skin which would make the animal waterproof and stops water from entering layers of air therefore maintaining insulation layers, dark skin to absorb more light and heat (black absorbs light, white reflects light, th...
Warmer water temperature discharged by waste industrial heat into water can affect many aquatic species that cannot tolerate the warmth. A higher level of temperature can result in low oxygen concentrations by speeding up the rate of decomposition of organic matter. "The discharges are often associated with coal-or nuclear-fuelled power plants, and sometimes with large factories." (H.J. Dorcey). The increase of heat materials dumped into water can increase the temperature level in the water bodies and can affect all living organisms within that body. There are many disadvantaging technology which has been affecting water and raising the water temperature from normal. For example, electric power plants might withdraw water from nearby water bodies for the purpose of cooling in the plant and then return the heated water back to the same water body. This is insanely affecting the regular temperature. If the water is not the same, it can lead to many damages within the water body. For example, fishes will dies exhausted from the warmth and it will also affect other aquatic organisms causing them to boil in the water caused by others, sacrificing these creatures. Water from excessively heating up can be best prevented by using special cooling towers and ponds that disperse the energy into the
Aluminum is slightly hazardous in case of skin contact (irritant), non-hazardous in case of ingestion, and non-hazardous in case of inhalation.
Refrigeration is the process of cooling down a space or thing below normal environmental temperature. Food preservation is vital in today’s day and age. From the meats to the dairy, everything needs to be kept at room temperature, cold, or frozen. People even like to make themselves cold and frozen by using air conditioning. But, it does make you wonder “how” and “when”. How did refrigeration become such an important invention and how did people survive without it? When did our ancestors realize it takes the cold to keep their food preserved and looking fresh? We now have fridges that have an automated ice machine and touch screens.
good emitter of heat radiation so a lot of heat will be lost to the
Still a little confused? The fins are extra surface area near the back of the rocket. This brings the Cp further back on the rocket without significantly moving the Cg..
In thermodynamics Refrigeration is the major application area, in which the heat is transferred from a lower temperature region to a higher temperature region. The devices which produce refrigeration are known as Refrigerators and the cycle on which it operates are called refrigeration cycles. Vapour compression refrigeration cycle is the most regularly used refrigeration cycle in which the refrigerant is alternately vaporized and condensed and in the vapor phase it is compressed. Gas refrigeration cycle is the well-known refrigeration cycle in which cycle refrigerant remains in the gaseous phase throughout the cycle. Cascade refrigeration are the other refrigeration cycles discussed in this chapter; absorption refrigeration is the one more refrigeration cycle which is used where the refrigerant is dissolved in liquid before it is compressed. One more refrigeration in which refrigeration is produced by passing the electric current through two dissimilar materials is called as the thermoelectric refrigeration.
Refrigeration, the production of cold, is an essential practice for present-day living. It is used in a many place like the processing and preservation of food, conditioning of air for comfort, manufacture of chemicals and other materials, cooling of concrete, medical applications etc. Refrigeration is defined as the science of maintaining the temperature of a particular space lower than its surrounding space. Refrigeration and air conditioning involves various processes such as compression, expansion, cooling, heating, humidification, de-humidification, air purification, air distribution etc. In all these processes, there is an exchange of mass, momentum and energy. All these exchanges are subject to certain fundamental laws. Hence to understand and analyses the refrigeration and air conditioning systems, a basic knowledge of the laws of thermodynamics, fluid mechanics and heat transfer is essential.
Refrigeration Refrigeration is defined as “The process of removing heat from an enclosed space, or from a substance, to lower its pressure.” (First website given in bibliography) In simpler terms, it is removing heat from states of matter in order to keep them cooler. The basic need for refrigeration is to cool food and beverages, as they often get spoilt if the temperature is high. Before actual refrigerators and other such mechanical systems were introduced, it was very common for people to cool their food with ice and snow.
This chart shows the relationship between the fanning friction factor and the Reynolds number over a wide range of flow rates, from which the roughness parameter (e/D) for the piping system can be estimated.
... temperature of 112 0C also and a pressure 2.5 bar. Cooling water is used to condense the vapor exiting column. Remaining methane and hydrogen are separated in reflux drum where the vapor stream is combined with other gases streams. The overhead of first and second separator are combined to form fuel gas. The liquid stream exiting in the bottoms of the reflux drum is pumped at pressure of 3.3 bar for discharging pressure. The pump stream is separated in two streams. One stream is to feed to tray one of the column and the other one stream is cooled down to 38 0C in heat exchanger. Then, the cooled product stream is sent to storage.
Heat energy is transferred through three ways- conduction, convection and radiation. All three are able to transfer heat from one place to another based off of different principles however, are all three are connected by the physics of heat. Let’s start with heat- what exactly is heat? We can understand heat by knowing that “heat is a thermal energy that flows from the warmer areas to the cooler areas, and the thermal energy is the total of all kinetic energies within a given system.” (Soffar, 2015) Now, we can explore the means to which heat is transferred and how each of them occurs. Heat is transferred through conduction at the molecular level and in simple terms, the transfers occurs through physical contact. In conduction, “the substance
These resources can be classified as low temperature (less than 194 degrees F), moderate temperature (194 – 302 degrees F), and also high temperature (greater than 302 degrees F). The uses to which these resources are applied are also influenced by temperature. If the reservoir is to be used for direct-heat application, the geothermal water is usually fed to a heat exchanger before being injected back into the earth. Heated domestic water from the output side of the heat exchanger is used for home heating, greenhouse heating, vegetable drying and a wide variety of other uses.
Life changed immensely in the 20th century as air conditioning and refrigeration systems became more efficient and controllable. Air Conditioning and Refrigeration play important roles in providing human comfort, food processing, storage, and many other industrial processes. We chose this topic because our life would be difficult without AC and Refrigeration. This paper will talk about the history of air conditioning and refrigeration, the role of engineers in designing and building it, people’s life before and after air conditioning and refrigeration, and finally Applications in the area of achievements and future developments.
Heat treatment is a process using the controlled application of heat to change the physical and chemical properties of a material, and is commonly used in metals. However, materials such as glasses can also be heat treated despite metals only.