Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Importance of enzymes in metabolism
Substrate effects on enzymes
Effects of enzymes on rate of reaction
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Introduction: In this experiment it talked about enzymes and substrates. What are enzymes and substrates? Enzymes are proteins that act as catalysts and help complex reactions. Substrates are the substance that the enzymes act. The reaction studied in the exercise is the oxidation of an ethanol substrate, and an acetaldehyde product. The two electrons were removed from the ethanol to convert to the oxidized form of Nicotinamide Adenine Dinucleotide (NAD+) to form the reduced form, NADH. This reaction is called a dehydrogenation reaction. The reduced form of NADH represents a bond energy storage molecule. The enzyme alcohol dehydrogenase (ADH), used NAD+ as a cofactor is reduced in the reaction. The purpose of this experiment will be to determine …show more content…
Enzymes are proteins that act as a catalysts and help complex reactions. Enzymes work with substrates which bind to the active site. The active site is also where the enzymes take their exact place. ADH is an enzyme that uses NAD+ as a cofactor. How does ADH affect alcohol? ADH affect alcohol by breaking it apart before it is able to reach the kidneys, so the more ADH produced the quicker the alcohol particles are broken apart. A theory of the photometric assay is that light can be classified according to its wave length. This is why we used a spectrophotometer, we set the wavelength to a certain number and it measures the absorbance of the solution. Therefore the more light that passes through a specific substances has a higher …show more content…
Mainly because different enzymes have different pH, and temperatures that they act on with. Adding more substrate can causes the enzyme to increase in activity. In the experiment you have ethanol who worked best with the changes of ph and temperature, whereas methanol was not so successful with the changes. The four alcohols each had the same reaction group but each had different chain length. Ethanol has a 2 chain length, Propanol 3, Methanol 1, and Butanol 4. As you can see in graph 2, the preferred alcohol was ethanol and the least preferred was methanol. You see this because ethanol has the highest absorbance and methanol has the least. The size of the substrate can determine how quickly the enzymes is able to recognize
The goal of this experiment is to determine which products are formed from elimination reactions that occur in the dehydration of an alcohol under acidic and basic conditions. The process utilized is the acid-catalyzed dehydration of a secondary and primary alcohol, 1-butanol and 2-butanol, and the base-induced dehydrobromination of a secondary and primary bromide, 1-bromobutane and 2-bromobutane. The different products formed form each of these reactions will be analyzed using gas chromatography, which helps understand stereochemistry and regioselectivity of each product formed.
For example, substrate concentration, enzyme concentration, and temperature could all be factors that affected the chemical reactions in our experiment. The concentration of substrate, in this case, would not have an affect on how the bovine liver catalase and the yeast would react. The reason why is because in both instances, the substrate (hydrogen peroxide) concentration was 1.5%. Therefore, the hydrogen peroxide would saturate the enzyme and produce the maximum rate of the chemical reaction. The other factor that could affect the rate of reaction is enzyme concentration. Evidently, higher concentrations of catalase in the bovine liver produced faster reactions, and the opposite occurs for lower concentrations of catalase. More enzymes in the catalase solution would collide with the hydrogen peroxide substrate. However, the yeast would react slower than the 400 U/mL solution, but faster than the 40 U/mL. Based on this evidence, I would conclude that the yeast has a higher enzyme concentration than 40 U/mL, but lower than 400
This evidence alone suggests that higher increases in substrate concentration causes smaller and smaller increases in enzyme activity. As substrate concentration increases further, some substrate molecules may have to wait for an active site to become empty as they are already occupied with a substrate molecule. So, the rate of the reaction starts to level off resulting in a plateau in the graphs. This means that the reaction is already working at its maximum rate, and will continue working at that rate until all substrates are broken down. The only way the reaction rate would increase, is if more enzyme was added to the solution. This confirms that increases in substrate concentration above the optimum does not lead to greater enzyme activity. Therefore, the rate of reaction is in proportion to the substrate
All living units ranging from single cells and organs to entire organisms carry out homeostasis (source 1). Homeostasis refers to the ability of the body or a cell to seek and maintain a condition of stability within its internal environment when dealing with external changes. It is involved in the maintenance of the constant internal environment which includes the function of kidney, liver, skin and many organs. The abuse of drugs alters the body’s internal environment, causing a response in order to achieve homeostasis, this is via negative feedback. Modern lifestyle poses many pressures on human homeostasis responses due to the use of drugs in our society. Specifically, Alcohol, and its effect on the human homeostasis responses.
Jim Clark. (2007). The effect of changing conditions in enzyme catalysis. Retrieved on March 6, 2001, from http://www.chemguide.co.uk/organicprops/aminoacids/enzymes2.html
In this investigation, the concentration of enzyme will be inversely proportional to the time taken for starch to be digested, until at a certain point where it will level out. It will level out because, all the substrates would have been used up, therefore there will be no more substrates for the enzymes to work on. In effect, the concentration of the substrate will act as a limiting factor. However, enzyme concentration will be directly proportional to the rate of reaction.
Background information:. Enzyme Enzymes are protein molecules that act as the biological catalysts. A Catalyst is a molecule which can speed up chemical reactions but remains unchanged at the end of the reaction. Enzymes catalyze most of the metabolic reactions that take place within a living organism. They speed up the metabolic reactions by lowering the amount of energy.
According to the graph on amylase activity at various enzyme concentration (graph 1), the increase of enzyme dilution results in a slower decrease of amylose percentage. Looking at the graph, the amylose percentage decreases at a fast rate with the undiluted enzyme. However, the enzyme dilution with a concentration of 1:3 decreased at a slow rate over time. Additionally, the higher the enzyme dilution, the higher the amylose percentage. For example, in the graph it can be seen that the enzyme dilution with a 1:9 concentration increased over time. However, there is a drastic increase after four minutes, but this is most likely a result of the error that was encountered during the experiment. The undiluted enzyme and the enzyme dilution had a low amylose percentage because there was high enzyme activity. Also, there was an increase in amylose percentage with the enzyme dilution with a 1: 9 concentrations because there was low enzyme activity.
Purpose: This lab gives the idea about the enzyme. We will do two different experiments. Enzyme is a protein that made of strings of amino acids and it is helping to produce chemical reactions in the quickest way. In the first experiment, we are testing water, sucrose solution, salt solution, and hydrogen peroxide to see which can increase the bubbles. So we can understand that enzyme producing chemical reactions in the speed. In the second experiment, we are using temperature of room, boiling water, refrigerator, and freezer to see what will effect the enzyme.
Introduction / Background Information. This is an experiment to examine how the concentration of the substrate Hydrogen Peroxide (H2O2) affects the rate of reaction of the enzyme Catalase. In this experiment I will be using yeast as a source of catalase. Enzymes are catalysts which speed up specific reactions. Enzymes such as catalase are protein molecules, which speed up a specific reaction within the cell.
Enzymes have the ability to act on a small group of chemically similar substances. Enzymes are very specific, in the sense that each enzyme is limited to interact with only one set of reactants; the reactants are referred to as substrates. Substrates of an enzyme are the chemicals altered by enzyme-catalysed reactions. The extreme specific nature of enzymes are because of the complicated three-dimensional shape, which is due to the particular way the amino acid chain of proteins folds.
Enzymes are types of proteins that work as a substance to help speed up a chemical reaction (Madar & Windelspecht, 104). There are three factors that help enzyme activity increase in speed. The three factors that speed up the activity of enzymes are concentration, an increase in temperature, and a preferred pH environment. Whether or not the reaction continues to move forward is not up to the enzyme, instead the reaction is dependent on a reaction’s free energy. These enzymatic reactions have reactants referred to as substrates. Enzymes do much more than create substrates; enzymes actually work with the substrate in a reaction (Madar &Windelspecht, 106). For reactions in a cell it is important that a specific enzyme is present during the process. For example, lactase must be able to collaborate with lactose in order to break it down (Madar & Windelspecht, 105).
Enzymes as mentioned before help speed up reactions, they generally work by bonding to a substrate, this bonding occurs at the active site. This link then forms a different molecule which will benefit its respective process. Every enzyme has its own optimum pH level to work under, if too low the enzyme will be very slow. However if too high the enzyme will then denature and be obsolete. This is why it is important to know the optimum pH level for whatev...
Without enzymes, reactions wouldn’t occur and living organisms would die. For instance, the enzyme in the stomach breaks down large molecules to smaller molecules to absorb nutrition faster. Researchers experimented with enzyme activity with a potato extract. Researchers will test enzyme activity by increasing and decreasing pH levels, lowering and increasing temperature, and substrate concentration effects. In the first experiment, researchers hypothesized whether different pH levels would change how much Benzoquinone are created and how will the enzymes function in neutral pH levels than higher and lower levels. Researchers used potato extract and different levels of pH to test their hypothesis. In addition, researchers questioned at what temperature does the greatest amount of potato extract enzyme activity take place in. Researchers then hypothesized that the results would indicate the greatest amount of potato enzyme activity level will take place in room temperature. In this experiment, researchers used potato extract and different temperature levels to test the hypothesis. Moreover, researchers wanted to test the color intensity scale and how specific catechol oxidase is for catechol. In this experiment, researchers used dH2O, catechol solution, hydroquinone, and potato extract. Lastly, researchers tested the substrate concentration and how it has an effect on enzyme activity. In this experiment researchers used different measurements of catechol and 1cm of potato extract. Researchers hypothesized that the increase o substrate would level out the enzyme activity
The process of alcoholic fermentation begins with the use of enzymes. The enzymes begin to break down the long chains in starch molecules, a polysaccharide that consists of a large quantity of glucose molecules (C6H12O6) joined by glycosidic bonds as seen in figure 1, into single glucose molecules, a monosaccharide with six carbons and five hydroxyl groups. After the starch has become sugar, the enzymes are used once again, this time to convert the sugars into ethyl alcohol and carbon dioxide, CO2, as seen in figure 2 (World of Scientific Discovery, 2007). The carbon dioxide produced is released into the atmosphere, leaving water and ethanol, the alcohol, behind. Ethanol is a colorless flammable liquid with a molecular formula of C2H6O, giving it a molar mass of 46.07 grams per mole. Ethanol is also characterized by a melting point of -114°C or 159 K.