Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Duchenne muscular dystrophy case study
Duchenne muscular dystrophy essay
Duchenne muscular dystrophy case study
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Duchenne muscular dystrophy case study
Duchenne muscular dystrophy
What is Duchenne muscular dystrophy?
Wendy Lee
Ms. Wainman
Biology A
21 May 2014
Contents
I. Introduction
A. Importance of the Case
II. Body
A. Duchenne muscular dystrophy
1. Characteristic
2. Actual Mutation
3. Location
4. Clinical Signs
5. Diagnosis
6. Prognosis
7. Treatment
8. Current Research
III. Conclusion
[Bibliography]
I. Introduction
A. Importance of the Case
Duchenne muscular dystrophy (DMD) is a muscular dystrophy that only occurs in boys. It is caused by the mutation of the DMD gene which is inheritable between families in an X-linked recessive, but it rarely occurs in people from families without a known family history of the condition. Starting from the lower limbs, people with DMD have progressive loss of muscle function and weakness. The DMD gene, which encodes the muscle protein, dystrophin, is the second largest gene. Boy’s muscle with Duchenne muscular dystrophy does not create the dystrophin. 1 in 3500 of the male births are approximately affected by the Duchenne muscular dystrophy.
II. Body
A. Duchenne muscular dystriphy
1. Characteristic
Duchenne muscular dystrophy is a physical impairment which causes the loose of the muscle and the weak bone.
2. Actual Mutation
3. Location
The DMD gene is located on the short arm of the X chromosome at position 21.2. More specifically, the DMD gene is located from base pair 31,119,221 to base pair 33,339,608 on the X chromosome.
Figure 1 “Location of the DMD gene”
4. Symptoms
The symptoms usually appear before age 6. In most cases, the first visible symptom is the postponement of sitting and standing independently. The average age for walking in boys with Duchenne muscular...
... middle of paper ...
...e progression. In DMD the muscle fibres are continuously damaged when the muscles contract. This causes inflammation which further damages the muscles leading to muscle wasting and the accumulation of scar tissue (‘fibrosis’). Drugs are being researched that could improve the ability of the body to repair damaged muscle, suppress inflammation and inhibit scar tissue formation.
"Learning About Duchenne Muscular Dystrophy." Learning About Duchenne Muscular Dystrophy. National Human Genome Research Institute, 18 Apr. 2013. Web. 15 May 2014.
"DMD." - Dystrophin. U.S. National Library of Medicine, Feb. 2012. Web. 15 May 2014.
"Duchenne Muscular Dystrophy: MedlinePlus Medical Encyclopedia." U.S National Library of Medicine. U.S. National Library of Medicine. Web. 20 May 2014.
"Diagnosis Duchenne Muscular Dystrophy." Muscular Dystrophy Association. Web. 20 May 2014.
DMD also known as muscular dystrophy is muscular disease that occurs on young boys around age four to six. Muscular dystrophy is genetically transmitted disease carried from parent to offspring. This disease progressively damages or disturbs skeletal and cardiac muscle functions starting on the lower limbs. Obviously by damaging the muscle, the lower limbs and other muscles affected become very weak. This is ultimately caused by the lack dystrophin, a protein the body produces.
Duchenne Muscular Dystrophy, also known as DMD, is the most common form of muscular dystrophy. Muscular dystrophy is a condition that is inherited, and it is when muscles slowly become more and more weak and wasted. Duchenne muscular dystrophy is a form of muscular dystrophy that is very rapid and is most commonly found in boys. In muscle, there is a protein named dystrophin. Dystrophin is encoded by the DMD gene. When boys have Duchenne muscular dystrophy, they do not produce enough dystrophin in their muscles. This causes weakness in their muscles. Parents can tell if their child has duchenne muscular dystrophy by looking for various symptoms.
Muscular Dystrophy is a diverse group of disease which involves the weakness and wasting of muscles and leads to many other problems in physiological system. It is because of mutation in gene related to contraction and relaxation of muscles. Although recently no perfect treatment option is available for it but in nearby future cure of this disease will be available due to advanced technology and methods like gene therapy and stem cell technology.
As motor neurons degenerate, this obviously means they can no longer send impulses to the muscle fibers that otherwise normally result in muscle movement. Early symptoms of ALS often include increasing muscle weakness, especially involving the arms and legs, speech, swallowing or breathing. When muscles no longer receive the messages from the motor neurons that they require to function, the muscles begin to atrophy (become smaller). Limbs begin to look thinner as muscle tissue atrophies (Choi, 1988).
Emery-Dreifuss muscular dystrophy is a rare form of muscular dystrophy characterized by early onset contractures of the elbows, achilles tendons and post-cervical muscles with progressive muscle wasting and weakness It is also associated with heart complications like cardiomyopathy and arrhythmia which in both cases can lead to death. Cardiomyopathy is a heart disease which affects the muscles of the heart. In cardiomyopathy is muscles get rigid, enlarged or thick. They also sometimes changed by scar tissues. On the other hand arrhythmia is a disorder with the rhythm or rate of heartbeat. The heart can beat fast, which is called tachycardia or it could be beating too slow, which is called bradycardia. Emery-Dreifuss muscular dystrophy is characterized by early onset of contractures and humeroperoneal distribution. Humeroperoneal refers to effects on the humerus and fibula. The genes known to be responsible for EDMD encode proteins associated with the nuclear envelope: the emerin and the lamins A and C.
Amyotrophic Lateral Sclerosis is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. Amyotrophic Lateral Sclerosis is better known as ALS or Lou Gehrig’s disease. Amyotrophic Lateral Sclerosis was not brought to International or national attention until Famous New York Yankees baseball player, Lou Gehrig, was diagnosed with it in 1939. Jon Stone, the writer and creator of Sesame Street, was also diagnosed with Amyotrophic Lateral Sclerosis. Amyotrophic Lateral Sclerosis is very deadly and it physically handicaps a person as it progresses. There are two types of Amyotrophic Lateral Sclerosis, Sporadic and Familial. Sporadic is the most common cause in some cases and Familial is inherited, which is rare. Amyotrophic Lateral Sclerosis is one of the most aggressive muscular atrophy disorders, it has many signs and symptoms, and it can be treated but cannot be cured.
Some range from neuromuscular disorders to myopathies. Polymyositis is an example of a group of diseases that involves inflammation of the muscles or associated tissue, such as blood vessels that supply the muscle. Another type of disorder is muscular dystrophy which affect the muscle fibers. There are even metabolic muscle disorder that interfere with the chemical reactions involved in drawing energy from food. Whereas, neuromuscular junction disorders impaired transmission of the nerve signals to the muscles. Some disorders affect the nerve cells that supply the muscles. This disorder is known as a motor neuron disorder, commonly known as amyotrophic lateral sclerosis
Marfan syndrome is an inherited disorder that affects the connective tissue of the body (“What is Marfan Syndrome?” n.d.). The connective tissue plays a vital role in supported the tendons, heart valves, cartilage, blood vessels, and more parts of the body (“Connective Tissue,” n.d.). “What is Marfan Syndrome?” (n.d.) explains that the condition has no cure, and those who have it lack strength in their connective tissue, affecting their bone, eyes, skin, nervous system, and lungs. Furthermore, Marfan syndrome is common, and it is imperative to understand how the body is affected by it, the symptoms, and the treatment of this condition.
Myotonic dystrophy, type 1, is a genetic disorder which is linked to chromosome number 19 in humans. The dystrophia myotonica protein kinase gene is located on the q arm of the chromosome at the locus of 13.32. It is an autosomal dominant disorder, which means that the individuals that are affected by this disorder and contain at least one dominant allele for the dystrophia myotonica protein kinase gene. The disorder is caused by a series of repeats of a trinucleotide region that is expanded beyond the normal levels (Musova et al., 2009). The trinucleotide region is a series of repeats of CTG in the untranslated region of the dystrophia myotonica protein kinase gene. The severity of the disorder is associated with the number of repeats the individual has within the gene. Normal individuals tend to have between 5 and 37 repeats while an individual with a very mild myotonic dystrophy may have 50 to 150 repeats, and if the disorder is discovered at the time of birth the individual will have over 2,000 repeats of the trinucleotide region (Musova et al., 2009). Myotonic dystrophy, type 1, affects multiple organ systems of the body and is relatively slow to progress. Myotonic dystrophy, type 1, is categorized by alterations of the beating pattern of the heart, faulty dystrophin proteins, clouding of the lens of the eye, decreased functionality of the gonads, balding, and myotonia (Musova et al., 2009). Myotonia is described as the slow relaxation of any muscle type, which will cause the individual to use extended effort to simply relax the muscles after they have been contracted. Muscular dystrophy causes an individual to experience muscular deg...
Muscular Dystrophy is a genetic disorder in which your muscles drastically weaken over time. Muscles are replaced with “connective tissue,” which is more of a fatty tissue than a muscular one. The connective tissue is the tissue that is commonly found in scars, and that same tissue is incapable of movement. Although Muscular Dystrophy affects muscles in general, other types affect certain groups of muscles, and happen at different periods throughout a lifetime. For example one of the most common types, Duchenne Muscular Dystrophy, targets muscles in the upper thigh and pelvis. The disease is displayed throughout early childhood, usually between ages four and seven. This genetic disorder occurs only in boys. People have difficulty sitting up or standing and lose their ability to walk in their early teens. Sadly most people die by the age of twenty. A second common type, Becker’s Muscular Dystrophy affects the same muscles as Duchenne, but first appears in teenage years. Most people with Becker’s only live into their forties (Fallon 1824-1825).
Heart Failure Overview WebMD Reviewed by Thomas M. Maddox, MD on May 28, 2012 http://www.webmd.com/heart-disease/heart-failure/heart-failure-overview
What Is Polio? What Causes Polio?. (n.d.). Medical News Today. Retrieved October 23, 2013, from http://www.medicalnewstoday.com/articles/
Nordqvist, C. (2009, March 19). What is Dementia? What Causes Dementia? Symptoms of Dementia. Medical News Today. Retrieved June 16, 2010, from http://www.medicalnewstoday.com/articles/142214.php
It is estimated that 1 out of every 5,600-7,700 boys ages 5-24 have Duchene or Becker muscular dystrophy. (“Data & Statistics,” 2012 April 6) Muscular dystrophy is a group of genetic diseases defined by muscle fibers that are unusually susceptible to damage. There are several different types of muscular dystrophy some of which shorten the affected person’s lifespan. (“Muscular dystrophy: Types and Causes of each form,” n.d.) There is a long history of the disorder but until recently there wasn’t much knowledge of the cause. (“Muscular Dystrophy: Hope through Research,” 16 April 2014) Symptoms are obvious and can be seen as soon as a child starts walking. (“Muscular Dystrophy,” 2012 January 19) Although muscular dystrophy mostly affects boys, girls can get it too. (“Muscular Dystrophy,” 2012 January 19) There is no cure for muscular dystrophy but there are several types of therapy and most types of muscular dystrophy are still fatal. (“Muscular Dystrophy: Hope through Research,” 16 April 2014)
"Adenosine - What Is Adenosine?" Adenosine - What Is Adenosine? N.p., n.d. Web. 09 Mar. 2014.