Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Difference between meiosis and mitosis essay scientist
Mitosis vs meiosis compare and contrast
Difference between meiosis and mitosis essay scientist
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Mitosis and meiosis both occur in the M phase of the cell cycle, and are the methods of cell division to form somatic cells and gametes, respectively. They are both complex processes that form more than one daughter cell from one parent cell, and they have many similarities and differences, which will be discussed in this essay.
Mitosis is the type of cell division that occurs in all somatic cells. Its purpose is to produce two genetically identical daughter cells. Before the process of mitosis starts, DNA replicates and the resulting sister chromatids are held together by cohesin proteins. (Alberts et al., 2010.) The centrosome, which is the principle microtubule organising centre (MTOC), also duplicates. In prophase, the two centrosomes
…show more content…
The microtubule spindles attach to the kinetochores in metaphase II, causing the chromosomes to line up, and at the start of anaphase II, the remaining cohesins at the centromere break down, so that the sister chromatids are able to separate and move to opposite ends of the cell. (Alberts et al., 2008.) They then undergo telophase and cytokinesis to produce four haploid cells. (Lodish et al., 2008.)
Mitosis and meiosis are similar methods of cell division, as both produce daughter cells. In both processes, the DNA is replicated beforehand, and they both undergo prophase, metaphase, anaphase and telophase at least once. Mitosis and meiosis II are very similar processes, except mitosis produces diploid somatic cells and meiosis produces haploid gametes. (Tortora and Derrickson,
…show more content…
(Alberts et al., 2010.) Meiosis also takes significantly longer than mitosis, due to prophase I being a long process. (Alberts et al., 2010.) In meiosis, homologous pairs line up and are separated first, whereas in mitosis, homologous pairs are not formed- so in metaphase, homologs line up separately. (Alberts et al., 2010.) Mitosis produces genetically identical daughter cells, whereas meiosis leads to variation due to the production of four non-identical daughter cells. This is because there is no genetic recombination in prophase of mitosis, whereas prophase I of meiosis contains at least one cross-over, resulting in genetic recombination between non-sister chromatids. (Lodish et al., 2008.) Figure 1 illustrates more differences between mitosis and meiosis, for example, the orientation of spindle fibres is the same in mitosis and metaphase II but not metaphase I, and the location of cohesins on the replicated chromosomes are shorter in mitosis than in metaphase
I will get 5 test tubes and place them into the test tube rack. I will
Meiosis is a kind of cell division that is the key for sexual reproduction to operate contrary to mitosis, a form of asexual reproduction that serves the purpose of growth, repair, and regeneration of cells. Due to the fact that meiosis produces four non-identical haploid daughter cells, it is of vital importance so to allow variation in a population that provides the foundation for evolution, as it permits a species to adapt to changes in their environment. As I briefly mentioned before, meiosis is separated into two stages – meiosis I and II. These stages are further chara...
10.4) In animal cells cytokinesis involves the formation of a cleavage furrow which pinches the cell in two. While in plants cells cytokinesis involves the division of cytoplasm by late telophase, so the daughter cells appear shortly after the end of mitosis.
The next step includes the two nuclei of the dikaryon fusing through karyogomy (Ross 146). The resulting diploid zygotic nucleus then undergoes meiosis, and four haploid nuclei are formed in the basidium (Webster 280). The haploid nuclei move into projections on the basidium, which turn into spores. The spores are attached to the sterigmata until they are released (Ross 146). The cycle then starts over again.
Compare and Contrast Mitosis and Meiosis. Meiosis and mitosis describes the process by which cells divide. either by asexual or sexual reproduction to produce a new organism. Meiosis is a form of cell division that produces gametes in humans.
The process of mitosis can take place in either a haploid (23 chromosomes) or a diploid (46 chromosomes) cell. Before a cell can be ready for a mitotic division it must primarily undergo its interphase stage. Following the interphase stage several other stages come into play. These stages are prophase, prometaphase, metaphase, anaphase, and telophase. During each specific stage certain sequences of events take place that assist to the completion of the division.
Sexual reproduction is that the union of male and feminine gametes to create a fertilised egg or zygote. The ensuing offspring inherit one-half their traits from every parent. Consequently, they 're not genetically similar to either parent or siblings, except within the case of identical twins. As theorised by Mendel, adults are diploid, meaning as 2N, having 2 alleles offered to code for one attribute. The gametes should be haploid, signified by N, containing just one allele in order that once 2 haploid gametes mix, they manufacture a traditional diploid individual. The method where haploid sex cells are created from diploid parents is known as meiosis, and it happens solely within the reproductive organs.
There are two main types of cells in the world. The simplest cells such as bacteria are known as Prokaryotic cells, and human cells are known as Eukaryotic cells. The main difference between each of these cells is that a eukaryotic cell has a nucleus and a membrane bound section in which the cell holds the main DNA which are building blocks of life.
Precise chromosomal DNA replication during S phase of the cell cycle is a crucial factor in the proper maintenance of the genome from generation to generation. The current “once-per-cell-cycle” model of eukaryotic chromosome duplication describes a highly coordinated process by which temporally regulated replicon clusters are sequentially activated and subsequently united to form two semi-conserved copies of the genome. Replicon clusters, or replication domains, are comprised of individual replication units that are synchronously activated at predetermined points during S phase. Bi-directional replication within each replicon is initiated at periodic AT-rich origins along each chromosome. Origins are not characterized by any specific nucleotide sequence, but rather the spatial arrangement of origin replication complexes (ORCs). Given the duration of the S phase and replication fork rate, adjacent origins must be appropriately spaced to ensure the complete replication of each replicon. Chromatin arrangement by the nuclear matrix may be the underpinning factor responsible for ORC positioning. The six subunit ORC binds to origins of replication in an ATP-dependent manner during late telophase and early G1. In yeast, each replication domain simply contains a single ORC binding site. However, more complex origins are characterized by an initiation zone where DNA synthesis may begin at numerous locations. A single round of DNA synthesis at each activated origin is achieved by “lic...
A chromosome is made up of two identical structures called chromatids. The process of nuclear division is called interphase; each DNA molecule in a nucleus makes an identical copy of itself. Each copy is contained in the chromatid and a characteristic narrow region called the centromere holds the two chromatids together. The centromere can be found anywhere along a chromosome but the position is the characteristic for a particular chromosome. Each Chromatid contains one DNA molecule. DNA is the molecule of inheritance and is made up of a series of genes. The fact that the two DNA molecules in the sister chromatids, and hence their genes, are identical is the key to precise nuclear division.
Meiosis is a specialized form of nuclear division in which there two successive nuclear divisions (meiosis I and II) without any chromosome replication between them. Each division can be divided into 4 phases similar to those of mitosis (pro-, meta-, ana- and telophase). Meiosis occurs during the formation of gametes in animals.
The differences between the phases of mitosis and meiosis are that in mitosis, it has 1 cell division, duplicates the DNA, occurs in somatic cells, and no crossing over happens. In meiosis, it has 2 cell divisions, reduces the DNA, occurs in gametes or sperm and egg cells, while crossing over happens. They are both similar in which they both create daughter cells, headed by at least one round of DNA replication, and have similar stages for cell division.
Once the sperm fuses with the ovum both chromosomes will pair up and begin the first stages of cell division.
There are certain things that must happen first before the cell can actually split. There is a six step process required during Mitosis. The first five steps of mitosis are called prophase, prometaphase, metaphase, anaphase, and telophase. This is where all the training and preparation is done for cell division. The sixth step is Cytokinesis, and that is when the cell literally splits into two. Like I said, there are certain things in order to happen before it can enter the M phase. first, it must meet the requirements of the certain size and environment. Since in the S phase the cell duplicated it’s amount of chromosomes it be represented as 2N, where N equals the number of chromosomes in the cell. Cells about to enter M phase, which have passed through S phase and replicated their DNA, have 4N chromosomes. Because of this they are now allowed to enter within the M phase to prophase. Here is where the cell thickens up its chromosomes and begin to sprout microtubules from clone centrosomes. Microtubules tub-like are protein filaments and where the chromosomes migrate but are still within the nuclear envelope in the nucleus. There are centromeres, that are inside the chromosomes and during the later process of this phase, specialized microtubules called kinetochores, assemble on the centromere then later attach to these sites. They act like magnets and go
All cells are the product of multiple rounds of cell growth and division, new cells are formed from existing cells, as has been the processes since the beginning of life on Earth. The reproduction of new cells is a very organized sequence of events called the cell cycle. This cycle is the essential mechanism by which all living cells reproduce whether unicellalur or mutlicelluar the basic mechanism is universal. However, variations in the details do occur from organism to organism and the cycle can start at different times in the organism’s life. The Eukaryotic cell cycle usually consist of four phases.