The Cray X-MP/22 manufactured by Cray Research Incorporated (CRI) of Minneapolis, Minnesota was delivered and installed at the U of Toronto this September. The Cray is a well respected computer - mainly for its extremely fast rate of mathematical floating-point calculation. As the university states in its July/August computer magazine "ComputerNews", the Cray's "level of performance should enable researchers with large computational requirements at the university of Toronto and other Ontario universities to compete effectively against the best in the world in their respective fields." The Cray X-MP/22 has two Central Processing Units (CPUs) - the first '2' in the '22'. The Cray operates at a clock rate of 105 MHz (the regular, run-of-the-mill IBMPC has a clock rate of 4.77 MHz). By quick calculations, you would be led to believe the Cray is only about 20 times faster that the PC. Obviously, this is not the case.
The Cray handles data considerably differently than the PC. The Cray's circuits permit an array of data (known as a 'vector') to be processes as a SINGLE entity. So, where the IBMPC may require several clock cycles to multiply two numbers, the Cray performs everything in one clock cycle. This power is measured in Millions of Floating Point Operations Per Second (MFLOPS) - which is to say the rate at which floating-point operations can be performed. The Cray MFLOPS vary as it does many activities, but a rate of up to 210 MFLOPS (per CPU) can be achieved. The second '2' in the X-MP/22 title refers to the two million 64-bit words (16Mb) of shared central memory.
This can be expanded to four million words in the future if the need arises. But it doesn't stop there! The Cray can pipe information back and forth between the CPU memory and the Input/Output Subsystem (IOS). The IOS then takes it upon itself the store the information in any of the four storage devices: i) one of the four 1200 Mb disk drives (at a rate of 5.9Mb every second), ii) one of two standard 200ips 6250bpi tape drives, iii) a Solid State Storage Device (SSD) (which is much like a 128Mb RAM Disk!), or iv) through to a front-end computer (the U of T uses both the IBM4381 and a DEC VAX). These computers would be programmed (usually in FORTRAN) and the information passed onto the Cray. The results would then be transfered back to the front end computers.
...e data from the camera is fed to the processing unit in a computer (PC). The raw data is processed and the heart rate and the PPG waveform are displayed on the screen.
The Computron, Inc. is facing problems regarding pricing the bid for Computron 1000X, future functioning of Frankfurt plant, impact on production due to current market breakdown.
The Hefty Hardware case study presents multiple critical issues that will impact both short-term and long-term growth and development of the company. The first issue is the communication gap and lack of integration between stakeholders in business and the Information Technology division. The second critical issue is the lack of shared knowledge and each department working on projects in essentially silos. The third critical issue is internal company politics driving the executive-level decision making process. Solutions to the above issues will need to be addressed with utmost urgency to ensure Hefty Hardware’s foothold in the marketplace.
The history of computers is an amazing story filled with interesting statistics. “The first computer was invented by a man named Konrad Zuse. He was a German construction engineer, and he used the machine mainly for mathematic calculations and repetition” (Bellis, Inventors of Modern Computer). The invention shocked the world; it inspired people to start the development of computers. Soon after,
It has the ability to store many items at the same time. Random accessing of elements is allowed, so any element of an array can be accessed randomly using indexes. It stores the data in linear form. (Sheeba, 2016) The memory arrangements are efficient.
Computer hardware engineers research, develop, and test computer systems and components such as processors, circuit boards, memory devices, and many more (Bureau of Labor Statistics). They design new computer hardware, create blueprints of computer equipment to be built. Test the completed models of the computer hardware that they design. Update existing equipment so that it will work will new software. Oversee the manufacturing process for the computer hardware. Maintain knowledge of computer engineering trends and new technology(Bureau of Labor Statistics).
To meet and respond to its customers needs, IBM creates, develops and manufactures many of the worlds most advanced technologies, ranging from computer systems and software to networking systems, storage devices and microelectronics. Indeed, IBM has various product lines and services a few of which are: the Personal Computer that was first created in 1981, AS/400 business system, RS/6000 family of workstations and server systems, S/390 enterprise server, groundbreaking ThinkPad notebook computer; the award-winning IBM Netfinity and finally, PC Servers. It is an important supplier of hard disks, random access memories, and liquid crystal monitors.
Building a computer can be a useful skill in today's world. It allows you to
The computer processor is the brain of the system. Our client requires a heavy punch, multi tasking brain. Due to his low income and student status, he does not have a large budget to put towards his computer. The AMD AthlonXP 1900 was chosen because of it's low cost and it's higher performance rating than that of the higher priced equivalent Pentium 4. The AMD AthlonXP 1900's speed is 1.6GHz. This means 1600Hz, which is a very fast processor. Amazingly, the clock speed of this processor is faster, albeit barely, than the Pentium 4 2.0GHz processor, and is much cheaper as well. This is important, as, for less cash, our student can afford a better processor.
Microprocessors and Angelic Self-possession: The microprocessors of today's computers are integrated circuits which contain the CPU on a single chip. The latest developments, with variable clock speeds now often exceeding 200 MHz, include Intell's Pentium chip, the IBM/Apple/Motorola PowerPC chip, as well as chips from Cyrix and AMD. The CPU chip is the heart of the computer; only memory and input-output devices have to be added. A small fan might be added on top of the fastest chips to cool them down, but in the chip itself there are no moving parts, no complex gaps between the movement being imparted and that which imparts the movement.
Gates and Allen soon got many opportunities to prove their computer skills. In 1972, they started their own company called 'Traf-O-Data.' They developed a portable computer that allowed them t...
The Von Neumann bottleneck is a limitation on material or data caused by the standard personal computer architecture. Earlier computers were fed programs and data for processing while they were running. Von Neumann created the idea behind the stored program computer, our current standard model. In the Von Neumann architecture, programs and data are detained or held in memory, the processor and memory are separate consequently data moves between the two. In that configuration, latency or dormancy is unavoidable. In recent years, processor speeds have increased considerably. Memory enhancements, in contrast, have mostly been in size or volume. This enhancement gives it the ability to store more data in less space; instead of focusing on transfer rates. As the speeds have increased, the processors now have spent an increasing amount of time idle, waiting for data to be fetched from the memory. All in all, No matter how fast or powerful a...
Processor speeds are measured in megahertz (MHz) and now come in speeds of up to 1000 MHz (1 GHz), which is very fast. This is almost ten times faster than the speed of most home computers, which average from 133 MHz to 166 MHz. Intel and AMD have been in a race to break the 1 GHz speed barrier, and the number of megahertz in the newest processors is not as significant as it was in earlier processors. For example, the difference between a 133 MHz processor and a 166 MHz processor is
Prior to the revolution in technology that was microprocessors, making a computer was a large task for any manufacturer. Computers used to be built solely on discrete, or individual, transistors soldered together. Microprocessors act as the brain of a computer, doing all mathematics. Depending on how powerful the machine was intended to be, this could take weeks or even months to produce with individual components. This laborious task put the cost of a computer beyond the reach of any regular person. Computers before lithographic technology were massive and were mostly used in lab scenarios (Brain 1).
Since the time when man first learned to express how they felt in written form, by drawing or writing, we have tried to communicate with other people. First, it was the prehistoric man with their conceptual cave drawings showing what animals to hunt, how to hunt them, and how to cook them. Soon that form took to hieroglyphics, in which the Egyptians would tell stories about battles they had won and about new pharaohs that had been born. This picture form soon turned in to words in which the Romans would communicate with one another. So it went, each generation progressed more and more, until it was the 20th century.