Genetics relies on chemistry to explain phenomena related to the field. The structure of DNA relies on chemistry. In fact, when James Watson and Francis Crick discovered the structure of DNA, they did so by building models based on the laws of chemistry. Chemistry also relates heavily to the structure and function of one of the main products of DNA: protein.
Chemistry dictates the structure of DNA. DNA is a polymer of monomers called nucleic acids. These are made of a nitrogenous base, a phosphate group and a sugar. It is the negative charge on the phosphate group that makes DNA an acid. There are 4 different bases: adenine, thymine, guanine and cytosine. In groups of three, these four bases can code for any protein coded for in an organism’s genome. Two strands of nucleic acids stack on top of each other in a double helix. The backbone of the nucleic acids consists of the interaction between phosphate groups and the hydroxide groups of nucleic acids. These are held together by covalent bonds called phosphodiester bonds. The helix itself is held together by hydrogen bonds. Although h...
DNA is made up of nucleotides, and a strand of DNA is known as a polynucleotide. A nucleotide is made up of three parts: A phosphate (phosphoric acid), a sugar (Deoxyribose in the case of DNA), and an organic nitrogenous base2 of which there are four. The four bases are as followed: Adenine (A), Cytosine
These discoveries about the structure of DNA allowed scientists to explore the genome and develop a stronger understanding of genes. Within a decade of its discovery, other scientists had identified the genes responsible for specific diseases and traits. The discovery of the structure of DNA created a basis for ...
The study of nucleic acids has now become a fruitful and dynamic scientific enterprise. Nucleic acids are of unique importance in biological systems. Genes are made up of deoxyribonucleic acid or DNA, and each gene is a linear segment, or polymer, of a long DNA molecule. A DNA polymer, or DNA oligonucleotide, contains a linear arrangement of subunits called nucleotides. There are four types of nucleotides. Each nucleotide has three components; a phosphate group, a sugar and a base that contains nitrogen within its structure. The sugar moiety in DNA oligonucleotides is always dexoyribose, and there are four alternative bases: adenine (A), thymine (T), guanine (G), and cytosine (C). The phosphate groups and the deoxyribose sugars form the backbone of each DNA stand. The bases are joined to the deoxyribose sugar and stick out to the side. Both oligomers, DNA and RNA, consist of 5’->3’ phosphodiester-linked nucleotide units that are composed of a 2’-deoxy-D-ribose (DNA) or D-ribose (RNA) in their furanose forms and a heteroaromatic nucleobase (A, T, G, and C; A, U, G, C), and the resulting oligonucleotide chain is composed of a polar, negatively charged sugar-phosphate backbone and an array of hydrophobic nucleobases. The amphiphilic nature of these polymers dictates the assembly and maintenance of secondary and tertiary structures the oligonucleotides can form. In the DNA duplex structure, genetic information is stored as a linear nucleotide code. This code can be accessed and replicated. RNA, or ribonucleic acid, is another structurally related essential biopolymer. RNA differs from DNA in having the sugar ribose in place of the deoxyribos...
Deoxyribo Nucleic Acid (DNA) is a chromosome found in the nucleus of a cell, which is a double-stranded helix (similar to a twisted ladder). DNA is made up of four bases called adenine (A), thymine (T), guanine (G), and cytosine (C), that is always based in pairs of A with T and G with C. The four bases of A, C, G, and T were discovered by Phoebus Levene in 1929, which linked it to the string of nucleotide units through phosphate-sugar-base (groups). As mention in Ananya Mandal research paper, Levene thought the chain connection with the bases is repeated in a fix order that make up the DNA molecu...
The essential component of life can be acknowledged and is made up of a nucleic acid known as DNA. DNA is the abbreviated form for the word deoxyribonucleic acid and it is the “carrier of genetic information” (McMurry, Ballantine, Hoeger, & Peterson, 1992, pg. 775). DNA contains the genetic instructions that are needed for an organism to develop, survive, and replicate, as it plays a crucial role in living systems that makes each species unique and distinctive. The multifaceted material is stored in every cell of every living organisms and it contains information about our nature, appearance, performance, etc. With the instructions that it contains, DNA is passed from the adult organism to their offspring during reproduction. (McMurry, Ballantine, Hoeger, & Peterson, 1992, pg.777).
The first and primary contribution to solving the DNA structure was the relationship of Crick and Watson. Without their teamwork and determination, another scientist would have discovered the structure before them. One of Crick’s bigger contributions was discovering the gene is self-replicating. After talking with John Griffith, Crick came up with the idea that the gene is self-replicating, meaning the gene has the ability “to be exactly copied when the chromosome number doubles during cell division”(126). With further discussion with Griffith, Francis believed that DNA replication involved specific attractive forces between the flat surfaces of the bases (128). One of Watson’s major contributions was after seeing the B form of DNA by Franklin, Watson knew that the structure of DNA was two-chained and that led to the building of the model of DNA (171). Also through research, Watson became aware that adenine and thymine pair together and are held by two hydrogen bonds that were identical in shape to the guanine and cytosine pair held together by at least two hydrogen bonds (194). This discovery showed that the two chains of DNA are complementary to each other. With these individual contributions coming together, Watson and Crick successfully were able to piece together the structure of DNA.
"The discovery of the structure by Crick and Watson, with all its biological implications, has been one of the major scientific events of this century." (Bragg, The Double Helix, p1) In the story of The Double Helix, James Watson tells of the road that led to the discovery of life's basic building block-DNA. This autobiography gives insight into science and the workings within a professional research laboratory that few members of society will ever be able to experience. It also gives the reader an idea of the reality of life for one scientist and how he struggled with the problem of DNA. However, the author's style is marked by his lack of objectivity and inclusion of many biased opinions and personal prejudices.
DNA is composed of three major factors: a five-carbon sugar, a phosphate group, and nitrogenous bases (Biology pg. 259-260). The first major factor is the five-carbon sugar, which is a sugar molecule known as deoxyribose. The second major factor is phosphate group, which acts as a type of backbone and allows the DNA, as well as RNA, the opportunity to form the long chains of nucleotides “by the process of dehydration synthesis (Biology pg. 260).” The third main component is the nitrogenous bases, which can be a purine group, or a two-ringed structure; or a pyrimidine, which is a single-ringed structure.
...d sheet metal to represent the molecule's chainlike structure. They were both very aware that DNA could have had a general, winding shape of a helix, but what still remained a mystery to Watson and Crick was how DNA's four bases (adenine, guanine, thymine, and cytosine) were arranged around a sugar and phosphate backbone.
There are billions of people on this earth and each is unique in its own way. The same is true for molecules and substances. There are billions of different molecules and substances on earth and each one has unique properties to make it what it is. When looking at some of the smallest characteristics of things, molecular shape and intermolecular forces come into play. Molecular shape and intermolecular forces help determine what physical properties substances and objects have. Each plays a key role. Science is able to break substances down and determine what molecular shape and intermolecular forces have to do with physical properties.
Connected to the backbone of the DNA molecule are different combinations of the four base pairs: adenine, cytosine, guanine and thynime - where only thymine and adenine pair together, and cytosine with guanine. The combination of a sugar molecule, a base and a phosphate molecule grouped together make a nucleotide. When the sugar is linked to the phosphate, it makes up the one side of the DNA. These nucleotides are found in abandantly.
DNA is the abbreviation for deoxyribonucleic acid. DNA is the genetic material found in cells of all living organisms. Human beings contain approximately one trillion cells (Aronson 9). DNA is a long strand in the shape of a double helix made up of small building blocks (Riley). There are four types of building blocks called bases connected with DNA: adenine, guanine, cytosine, and thymine. Each of the bases is represented by the letters A, G, C, and T. The bases are aligned in a specific order, adenine pairs with thymine and guanine pairs with cytosine; this determines a person’s genetic trait (DNA Initiative).
DNA (deoxyribonucleic acid) is a self-replicating molecule or material present in nearly all living organisms as the main constituent in chromosomes. It encodes the genetic instructions used in the development and functioning of all known living organisms and many viruses. Simply put, DNA contains the instructions needed for an organism to develop, survive and reproduce. The discovery and use of DNA has seen many changes and made great progress over many years. James Watson was a pioneer molecular biologist who is credited, along with Francis Crick and Maurice Wilkins, with discovering the double helix structure of the DNA molecule. The three won the Nobel Prize in Medicine in 1962 for their work (Bagley, 2013). Scientist use the term “double helix” to describe DNA’s winding, two-stranded chemical structure. This shape looks much like a twisted ladder and gives the DNA the power to pass along biological instructions with great precision.
1a. Which Figure 1A or 1B, is of bacterial DNA? Which figure is of eukaryotic DNA?
...f the structure of DNA by James Watson and Francis Crick in 1953 that was extremely influential for future researchers. They determined that DNA was a double helix structure composed of base pairings, with a sugar phosphate backbone. This model explained how “genes can duplicate themselves [and] would eventually lead to our current understanding of many things, from genetic disease to genetic engineering” (Salem).