Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
More about the cell cycle
More about the cell cycle
More about the cell cycle
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: More about the cell cycle
Cell cycle is a complex mechanism that governs the cell growth and proliferation. Cell proliferation contributes to the continuity of life by producing cells, replenishing cells which undergone to cellular differentiation to acquired specialized phenotypes (function and morphology) to carry out living mechanism and towards the end-point-cell-death. Cell proliferation is determined by both extracellular signals such as cytokines and mitogen, and intrinsic cellular factors. Interactions of extracellular signals with intrinsic cellular factors trigger the biochemical events of cell proliferation. In the case of acquired immunity, proliferation is the important state after lymphocytes encountered to antigen presentation, and then leads to their effectors functions. Cell cycle regulators control the appropriate entry and progression throughout the cell cycle event. Thus, any cell cycle deregulation will potentially lead to tumourigenesis. (Malumbres and Carnero 2003)
Upon exposure to extracellular signals and activation of intrinsic cellular factors, cells undergo an ordered series o...
...s to interfere with bonding to the receptors. The final possibility uses CNP, which downregulates the activation in MAP kinase pathways in the chondrocytes (4).
In The Immortal Life of Henrietta Lacks, multiple cell research studies involving Henrietta’s cells are described. Author Rebecca Skloot writes about Henrietta Lacks’ journey through her cervical cancer and how her cells changed the lives of millions long after her death. Skloot relates the history of cell research, including those studies which were successful and those that were not so successful. It is necessary for the author to include the achievements and disturbing practices of scientists throughout this history to inform readers and focus on the way Henrietta’s cells were used. Truth always matters to readers and Henrietta’s family deserves the truth.
..., while a cell undergoes cell cycle, when a cell comes in contact with another cell, it stops reproducing. However, cancer cells continue to duplicate repeatedly until there is a mass of cells or a tumor to form (see figure 9). Lastly, in cell division when there is a mutation or abnormality in the DNA, a normal cell stops dividing. However, a cancerous cell will continue to duplicate and form mutations (“Cell Biology and Cancer”). Also, cancer cells are harmful because they grow and duplicate with complete disregard to the functions and limitations of the body (see figure 10). Also, cancerous cells have the ability to spread through metastasis throughout parts of the body through the bloodstream. In terms of similar behavior to that of normal cells, cancerous cells also duplicate, but at a very different rate ("Cancer Cells vs. Normal Cells: What's Different?").
As part of the cell cycle, mitosis is the nuclear division of replicated chromosomes by the disconnection of the replicated chromosomes to form two genetically identical daughter nuclei. Escorted by mitosis is commonly the process of cytokinesis. The cytokinesis process entails a dividing cell splitting into two, resulting in the subdivision of the cytoplasm into two cellular suites.
To understand how immunotherapy works it helps to know how your immune system works to fight against cancer. Cancer cells have substances on their surfaces called tumor antigens that raise an alarm in the immune system that says cancer is present. Antigen presenting cells ( APCs) roam the body seeking out and ingesting tumor antigens. The APCs then activate B cells and T cells. The B cells differentiate into plasma cells and secrete antibodies that bind to the tumor cell and mark them for elimination ( a humoral immune response). When T cells are activated they proliferate and undergo expansion, seek out, and destroy cells bearing the specific tumor antigens ( a cellular immune response). Sometimes your immune response does not destroy all of the cancer cells and this r...
Huether, S.E. & McCance, K.L. (2008). Understanding pathophysiology (4th ed.). St. Philadelphia, PA: Mosby Elsevier
The cell cycle is the process by which cells progress and divide. In normal cells, the cell cycle is controlled by a complex series of signaling pathways by which a cell grows, replicates it’s DNA and divides, these are called proto-oncogenes. A proto-oncogene is a normal gene that could become an oncogene due to mutations. This process has mechanisms to ensure that errors are corrected, if they are not, the cells commit suicide (apoptosis). This process is tightly regulated by the genes within a cell’s nucleus. In cancer, as a result of genetic mutations, this process malfunctions, resulting in uncontrolled cell proliferation. Mutations in proto-oncogene or in a tumour suppressor gene allow a cancerous cell to grow and divide without the normal control imposed by the cell cycle. A change in the DNA sequence of the proto-oncogene gives rise to an oncogene, which
8. Becker W. M, Hardin J, Kleinsmith L.J an Bertoni G (2010) Becker’s World of the Cell, 8th edition, San Francisco, Pearson Education Inc- Accessed 23/11/2013.
Healthy cells grow and divide in a way to keep your body functioning properly. But when a cell is damaged and becomes cancerous, cells continue to divide, even when new cells aren't...
25% of the deaths h in 1991 and is the most common cause of death
"The general idea is an old one, that any two cells or systems of cells that are repeatedly active at the same time will tend to become 'associated', so that activity in one facilita...
When a cell in our body has become infected or has become cancerous it’s surface changes. This is how the immune system can tell good cells from bad ones (the markings on the surface.) Once a bad cell has been recognized our bodies sends cells to destroy the damaged cell and prevent the spread of whatever caused the damage in the first place. The next step our body takes is to have the affected cells start to produce interferons and other helpful substances. These help to fight off unwanted organisms, and also to warn other cells of the invaders and prepare them to resist them therefore preventing the spread of disease.
Our immune system protects our bodies from pathogens like bacteria and viruses very efficiently in most cases. One big question that has come up is why does the immune system not respond to cancerous cells in the same way? Why are cancer cells not eradicated like other dangerous foreign cells? This seems very strange, especially since the immune system has cells that are specific to destroying cancer cells and virus-infected cells, called natural killer cells. To begin to answer this question it is useful to examine cancer cells and their interactions with the immune system in more detail.
Innate system critical main defense is the cellular component; there are several kinds of cells involved in the process. One of the crucial cells is the macrophage. ...
What is the cell cycle? It’s the way we reproduce. A series of events lead up from the beginning that which gives them life to the splitting of cells, The separate steps make up this very important process. Without the division of cells, we simply would not be here today.