Along with vision, hearing is one of the most important senses that humans have. We use it to communicate, learn, and stay aware of our environment. In fact, hearing is the only sense that never stops receiving sensory input. While all of our other senses become drastically less sensitive when we are sleeping, our brain still processes auditory information to awaken us the second something is wrong. Although this may have been more practically used before people slept safely in homes, it’s still useful for hearing a fire alarm or our alarm clock in the morning. We are able to hear by processing sound waves. This energy travels through the delicate structures in our ears to be transformed into neural activity so that we can perceive the sensory information we receive (Myers, 2010). Each of the senses receives a different stimulus that allows us to perceive that specific type of information. For hearing the stimulus is sound waves. These are waves of pressure that are conducted through a medium (Martini, 2009). Often this medium is air but it can also be water or a solid object. Each wave consists of a region where the air molecules are gathered together and an opposite region where they are farther apart (Martini, 2009). A wavelength is the distance between either two wave peaks or two wave troughs. The number of waves that pass through a fixed reference point in a given time is the frequency. High pitch sounds have a high frequency where as low pitch sounds have a low frequency (Myers, 2010). The amplitude is the amount of energy, or intensity, in a sound wave. The more energy that a sound wave has, the louder it seems. For us to perceive any of the sound waves around us, they must pass through the external, middle, and inner ea... ... middle of paper ... ...nsations are then interpreted and we hear. The range of our hearing abilities is amazing. Most of this can be attributed to the sensitivity of our hair cells which can detect the smallest audible sounds yet withstand a trillion-fold increase in power (Martini, 2009). Our hair cells are constantly changing in order to adapt to our environment. We can have a conversation with our friends, listen to music, and distinguish which direction a car alarm is coming from without any awareness of the detailed process that is necessary for hearing. Overall, the process of turning sound waves into auditory sensations is quite remarkable. Works Cited Martini, F. H., & Nath, J. L. (8th Edition). (2009). Fundementals of human anatomy and physiology. San Francisco, CA: Pearson Benjamin Cummings. Myers, D. G. (9th Edition). (2010). Psychology. New York, NY: Worth Publishers.
Hearing allows us to take in noises from the surrounding environment and gives us a sense of where things are in relation to us. All those little folds on the outside of the ear, called the tonotopic organization, make it so sound waves in the air are directed to the ear canal, where they can be further processed. Once in the ear, the sound waves vibrate the ear drum, which tell the ear exactly what frequency it is sensing. The vibration of the ear drum is not quite enough to send a signal to the brain, so it needs to be amplified, which is where the three tiny bones in the ear come into play. The malleus or hammer, incus or anvil, and stapes or stirrup amplify this sound and send it to the cochlea. The cochlea conducts the sound signal through a fluid with a higher inertia than air, so this is why the signal from the ear drum needs to be amplified. It is much harder to move the fluid than it is to move the air. The cochlea basically takes these physical vibrations and turns them into electrical impulses that can be sent to the brain. This is...
This may happen unconsciously, as is usually the case with soft background noise such as the whoosh of air through heating ducts or the distant murmur of an electric clothes dryer. Sometimes hearing is done semi-consciously; for instance, the roar of a piece of construction equipment might momentarily draw one's attention. Conscious hearing, or listening, involves a nearly full degree of mental concentration. A familiar instance in which listening takes place would be a casual conversation with a friend or colleague. In such cases, the sound waves entering the ear are transferred to the brain, which then
The next speaker, Dr. Gottlieb investigated the hearing aspect of our senses. He investigated the interaction between our heari...
At any point in the air near the source of sound, the molecules are moving backwards and forwards, and the air pressure varies up and down by very small amounts. The number of vibrations per second is called the frequency which is measured in cycles per second or Hertz (Hz). The pitch of a note is almost entirely determined by the frequency: high frequency for high pitch and low for low .
After the sound is processed in the cochlea, the auditory information travels into the brain in order to be interpreted.
Marieb, Elaine N. "Chapter 7." Essential of Human Anatomy & Physiology. Seventh ed. N.p.: Daryl Fox, n.d. 217-20. Print.
For any individual who either avidly listens to or performs music, it is understood that many melodies have amazing effects on both our emotions and our perception. To address the effects of music on the brain, it seems most logical to initially map the auditory and neural pathways of sound. In the case of humans, the mechanism responsible for receiving and transmitting sound to the brain are the ears. Briefly stated, the outer ear (or pinna) 'catches' and amplifies sound by funneling it into the ear canal. Interestingly, the outer ear serves only to boost high frequency sound components (1). The resonance provided by the outer ear also serves in amplifying a higher range of frequencies corresponding to the top octave of the piano key board. The air pressure wave travels through the ear canal to ultimately reach and vibrate the timpanic membrane (i.e.-- the eardrum). At this particular juncture, the pressure wave energy of sound is translated into mechanical energy via the middle ear. Here, three small bones, the ossicles, vibrate in succession to produce a unique pattern of movements that embodies the frequencies contained in every sound we are capable of hearing. The middle ear is also an important component in what music we actually keep out of our 'head'. The muscles grasping the ossicles can contract to prevent as much as two thirds of the sound from entering the inner ear. (1, 2)
McLachlan, N. M., Phillips, D. S., Rossell, S. L., & Wilson, S. J. (2013). Auditory processing
Sound is a type of longitudinal wave that originates as the vibration of a medium (such as a person’s vocal cords or a guitar string) and travels through gases, liquids, and elastic solids as variations of pressure and density. The loudness of a sound perceived by the ear depends on the amplitude of the sound wave and is measured in decibel, while its pitch depends on it frequency measured in hertz, (Shipman-Wilson-Higgins, 2013).
Sensation refers to the process of sensing what is around us in our environment by using our five senses, which are touching, smell, taste, sound and sight. Sensation occurs when one or more of the various sense organs received a stimulus. By receiving the stimulus, it will cause a mental or physical response. It starts in the sensory receptor, which are specialized cells that convert the stimulus to an electric impulse which makes it ready for the brain to use this information and this is the passive process. After this process, the perception comes into play of the active process. Perception is the process that selects the information, organize it and interpret that information.
Sleeping is something that is an essential part of human nature and is a must in order for one to be a functional human being. Sleep is an idea that is accompanied by many wives’ tales, including the idea that one needs seven to eight hours of sleep each night and alcohol helps one fall asleep and sleep more soundly. One myth about sleep is that during sleep, one is in a state of nothingness. In truth, however, it has been discovered that during sleep the brain is active, variations in heartbeat and breathing occur, and the eyes and ears are active throughout the time of sleep. These activities during a person’s sleep are important because they help that person be more aware, awake, and alert during sleep.
The ear has three basic functions. The first is the most obvious, the filtration and analysis of sound by a part of the ear called the cochlea. This function consists of two parts: hearing and listening. Hearing is a passive process and we have limited abilities to improve it. Listening, ho...
Speaking of how the human ear receives music, sound is produced by vibrations that transmits energy into sound waves, a form of energy in which human ears can respond to and hear. Specifically, there are two different types of sound waves. The more common of the two are the transversal waves, which ...
Hearing is known to be an automatic function of the body. According to the dictionary, hearing is, “the faculty or sense by which sound is perceived; the act of perceiving sound,” (“hearing…”). Hearing is a physical and involuntary act; therefore, unless one is born with a specific form of deafness, everyone has the natural ability to hear sounds. Sounds constantly surround us in our everyday environments, and because we are so accustomed to hearing certain sounds we sometimes don’t acknowledge them at all (or “listen” to them). The dictionary definition of listening is, “to give attention with the ear; attend closely for the purpose of hearing,” (“listening…”).
What distinguishes sound waves from most other waves is that humans easily can perceive the frequency and amplitude of the wave. The frequency governs the pitch of the note produced, while the amplitude relates to the sound le...