Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Biology 20 respiratory system
Anaerobic respiration a level essay
Difference between aerobic and anaerobic respiration
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Biology 20 respiratory system
P6 – Respiration comes with two variations, one being aerobic respiration and the other being anaerobic respiration. Generally speaking respiration is the process in which energy gets released to be used by cells which comes from glucose. This process can occur with the use of oxygen which is named with one of the variations of respiration called aerobic respiration. Respiration that does not require oxygen is called anaerobic respiration.
Equation for aerobic respiration = glucose + oxygen Carbon dioxide + water (+ energy)
Co2 + H2o are waste products in this chemical equation whereas the glucose + oxygen are the substances that get used up.
These reactions occur within the mitochondria the majority of the time within both animal and plant cells. The variable that controls respiration are the protein enzymes
Aerobic respiration involves proteins like enzymes to assist with the process of breaking down food molecules in order to be
…show more content…
ATP is a form of energy in which is produced through aerobic respiration which uses oxygen. As a result of this process products such as H20 and CO2 are produced, without the presence of oxygen the cells would not be able to produce energy although this is where anaerobic respiration comes in to assist with the production of energy for cells.
As the process of aerobic respiration takes place Oxygen is reacted with the glucose which forms CO2 + H20 + ATP. The chemical equation for this is > C6H12O6 + 6O2 → 6CO2 + 6H2O + 2900 KJ (ATP)
The lack of oxygen during the process of anaerobic respiration causes a breakdown of glucose by cells which get broken down into lactic acid + ATP. This stage causes a release of energy although it is not as high in quantity in comparison to aerobic respiration. The chemical equation for this is > C6H12O6 → 2 C3H6O3 + Energy
gars. These are then split into two three-carbon sugar phosphates and then these are split into two pyruvate molecules. This results in four molecules of ATP being released. Therefore this process of respiration in cells makes more energy available for the cell to use by providing an initial two molecules of ATP.
I should read the article more carefully. I answered O2 has nothing to do with cellular respiration and it is wrong. According to the article, page 5, O2 said cellular respiration requires both myself (O2) and glucose by facilitated diffusion. The correct answer is oxygen and glucose work together to produce ATP. ATP molecules are yield during cellular respiration.
Cellular respiration is a chemical reaction used to create energy for all cells. The chemical formula for cellular respiration is glucose(sugar)+Oxygen=Carbon Dioxide+Water+ATP(energy) or C6H12+6O2=6CO2+6H2O+ energy. So what it is is sugar and
All three energy systems produce ATP in the form of energy. ATP is composed of the nitrogen base adenine, the pentose (5C) sugar ribose, and three phosphate groups. ATP’s primary source is carbohydrates (Refer to Appendix B). “They are obtained from foods known as complex carbohydrates.” (Amezdroz, et al, 2010) (Refer to Appendix C). When energy is required, “ATP works by losing the endmost phosphate group when instructed to do so by an enzyme.” ATP molecules can be found in all cells(Bris.ac.uk, 2018) (Refer to Appendix D). When the body is at rest there is a “low demand for ATP all energy is produced aerobically.” (Amezdroz, et al,
Both starch and sucrose can be converted back into glucose and used in respiration. Photosynthesis happens in the mesophyll cell of leaves. There are two kinds of mesophyll cells - palisade mesophyll and spongy mesophyll. The mesophyll cells contain tiny bodies called chloroplasts which contain a green chemical called chlorophyll.
Cellular respiration and photosynthesis are important in the cycle of energy to withstand life as we define it. Cellular respiration and photosynthesis have several stages in where the making of energy occurs, and have diverse relationships with organelles within the eukaryotic cell. These processes are central in how life has evolved.
Do you know how you are able to run long distances or lift heavy things? One of the reasons is cellular respiration. Cellular respiration is how your body breaks down the food you’ve eaten into adenosine triphosphate also known as ATP. ATP is the bodies energy its in every cell in the human body. We don’t always need cellular respiration so it is sometimes anaerobic. For example, when we are sleeping or just watching television. When you are doing activities that are intense like lifting weights or running, your cellular respiration becomes aerobic which means you are also using more ATP. Cellular respiration is important in modern science because if we did not know about it, we wouldn’t know how we are able to make ATP when we are doing simple task like that are aerobic or anaerobic.
= = = [IMAGE][IMAGE]6CO2 + 6h20 light energy and chlorophyll C6H1206 + 6O2 Carbon dioxide + water converted into glucose and oxygen. Theory of photosynthesis Photosynthesis is a chemical reaction, which uses the energy from sunlight to convert carbon dioxide and water to oxygen.
Photosynthesis and cellular respiration help sustain life on planet earth as both are metabolic processes in their own way. Photosynthesis is the process by which plants and other organisms use energy from the sun to form glucose from water and carbon dioxide. From there, glucose is then converted to ATP by way of cellular respiration. To convert nutrients that are biochemical energy into ATP, a process such as cellular respiration that has reactions needs to take shape in the cell of an organism, releasing waste products at the same time. For the continuous energy cycle that tolerates life on Earth as we know it Photosynthesis and Cellular respiration very essential. They have a few stages where energy and various connections occur within the eukaryotic cell. Cellular respiration takes place in the lysosome, an organelle that is found in the cytoplasm of eukaryotic cells. It uses enzymes to break down biomolecules including proteins, nucleic acids, carbohydrates, and lipids. Photosynthesis involves the chloroplasts, which contain pigments that absorb the sunlight and then transfigure them to sugars the plant can use. Those specific processes are crucial in how far and diversified evolution has
Fermentation is an anaerobic process in which fuel molecules are broken down to create pyruvate and ATP molecules (Alberts, 1998). Both pyruvate and ATP are major energy sources used by the cell to do a variety of things. For example, ATP is used in cell division to divide the chromosomes (Alberts, 1998).
If cells are denied energy, they will die. The second law of thermal dynamics says energy is lost in the form of heat whenever energy changes form. ATP is stored in the c. Glucose produced by C02, water and ATP. Respiration may be said to be a controlled breakdown of glucose that produces ATP for cell activities to be carried out. The purpose of the lab was to show the effect of temperature on the rate of respiration.
Aerobic requires oxygen and takes place inside the mitochondria of iving cells. The energy is stored as adenosine triphosphate (ATP) Aerobic respiration produces 2890KJ/Mole or 38ATP. This is much more than anaerobic. The
They are the same reactions, but occur in reverse. In photosynthesis, carbon dioxide and water yield glucose and oxygen respiration, process glucose and oxygen yield carbon dioxide and water, catabolic pathway process which requires or contains molecular oxygen for the production of adenosine triphosphate. This three step aerobic respiration cycle occurs in the cytoplasm and in the organelles called mitochondria. Within this process, cells break down oxygen and glucose in a storable form called adenosine triphosphate or ATP. This cellular respiration or sometimes called an exothermic reaction is similar to a combustion type reaction whereby the cell releases energy in the form heat but at a much slower rate within a living cell.
C6H12O6 + 2 ADP + 4 H+ → 2 C2H5OH + 2 CO2 + 2 ATP + 2 H2O
When humans consume plants, the carbohydrates, lipids, and proteins are broken down through two forms of cellular respiration. The two processes of cellular respiration displayed in humans are anaerobic and aerobic. The deciding process used depends on the presence of oxygen. Cellular respiration converts the material into a useable energy called ATP. ATP is the energy form that cells can use to perform their various functions, and it can also be stored for later use.