An Investigation into the Effect of Lipase Concentration on the Hydrolysis Of Fats
Using the data loggers a recording of the pH was taken every 5 seconds
and for each experiment the data loggers produced graphs of the change
in pH. From each of these graphs a gradient was calculated which
showed the rate of pH change per second. Firstly I calculated the
gradients by choosing the steepest section of the graph and dividing
the change in pH of this section by the time. However this method
proved to be quite inaccurate giving very varied results, for example
in these results the average rate of reaction for the 4% lipase
solution (-0.457 pH/min) was lower than the 3% lipase solution (-0.471
pH/min). Also the rates in the 2% lipase solution ranged from -0.01
pH/min to -0.95 pH/min showing little reliability in the results. This
was partly as I was only guessing which the steepest part of the graph
was. I then used the analysis function within data loggers to
calculate the gradient of the steepest part of the graph, this was a
much more accurate method and the results are given below.
Results
=======
Rate of Fat Hydrolysis (pH per Sec)
% Concentration of Lipase
Repeat 1
Repeat 2
Repeat 3
Average
1
-0.01
-0.01
-0.0100
2
-0.01
-0.01
-0.01
-0.0100
3
-0.02
-0.02
-0.01
-0.0167
4
-0.05
-0.06
-0.06
-0.0567
5
-0.03
-0.06
-0.06
-0.0600
Due to insufficient time a repeat for the 1% lipase could not be
carried out, the first repeat for the 5% lipase (highlighted) looks to
be anomalous so I have not included it when calculating the averages.
I have plotted graphs from both sets of calculated gradients however I
will concentrate on the graph plotted from the results show above as
To begin the study, I first calculated how much of each solution I would need. I knew that the final volume of my reaction solution needed to me 30ml, so I calculated how much of starch, amylase, and tris buffer I would need. I used the formula Concentration (initial stock solution) x Volume (initial stock solution)= Concentration (final solution) x Volume (final solution). Using this formula, I found that I would need an initial concentration of 21 ml of starch, 1 ml of amylase, and 8 ml of the tris buffer. After calculating the amounts of substances I would need, I created two different solutions, one with the Carb Cutter and one without. Carb Cutter claims to block starch, however, to find this I needed to test the absorbance level of the control to compare the effect Carb Cutter had on the solution. Below is a graph showing the concentration of the control reaction over one minute intervals through the
In undertaking the experiment, the hypothesis “if the number of Alka Seltzer tablets reacted increases, then the maximum rate of reaction will increase,” was formed. When graphing the relationship between the maximum rate of reaction and the number of Alka Seltzer tablets reacting, Graph 7 produced a line of best fit with a constant increasing slope that passed through the origin (0,0). This is characteristic of linear graphs, which have the general equation, y=mx, where m is the slope, a constant term, and y and x are changing variables that are directly proportional (i.e. y ∝x). Hence, it can be deduced that Graph 7 is a linear graph, and that there is a linear relationship between the maximum rate of reaction and the number of Alka Seltzer tablets, where they are directly proportional. That is, as the number of Alka Seltzer tablets increased, the maximum rate of reaction increased, supporting the hypothesis. As the true value of the maximum rate of reaction per Alka Seltzer tablet was not known, and a value for comparison was unavailable, the accuracy of the results could not be determined. However, due to the scatter in Graphs 2 to 7, it was evident that the results had low precision. In future, repeating the experiment using different and/or new apparatus will aid in detecting systematic errors and improve the accuracy and validity of the results.
The data we gathered was tested to be as accurate as possible. Our prediction on the solvents did not support our data that we collected. The cause of this could be due to human error when washing the beets or the cutting of the beets. The beets were not perfectly cut the same size, so some beet pieces were bigger than others which can affect the final the final result. We followed each step and followed the time limits cautiously. I can say if we were to redo the experiment our results would be similar because we would attempt to do the experiment as close as we did the first
These labels indicated the lactose solution that was be placed into the mini-microfuge tubes. The varying lactose ph solutions were obtained. The four miniature pipets were then used, (one per solution,) to add 1mL of the solution to the corresponding mini-microfuge tubes. When this step is completed there were two mini-microfuge tubes that matched the paper towel. Then, once all of the solutions contained their respective lactose solutions, 0.5mL of the lactase enzyme suspension was added to the first mini-microfuge tube labeled LPH4 on the paper towel, and 4 on the microfuge tube. As soon as the lactase enzyme suspension was added to the mini-microfuge tube, the timer was started in stopwatch mode (increasing.) When the timer reached 7 minutes and 30 seconds, the glucose test strip was dipped into the created solution in the mini-microfuge tube for 2 seconds (keep timer going, as the timer is also needed for the glucose strip. Once the two seconds had elapsed, the test strip was immediately removed, and the excess solution was wiped gently on the side of the mini-microfuge tube. The timer was continued for 30 addition seconds. Once the timer reached 7:32 (the extra two seconds accounting for the glucose dip), the test strip was then compared the glucose test strip color chart that is found on the side of the glucose test strip
For example, incubating the samples at different temperatures would create more data points to establish an optimal temperature. From the results in the experiment in this study, it is known as temperature increases, enzymatic activity increase, and vise versa. However, what can not be observed is at what point does the increase in temperature begin to denature the enzyme, above 60°C. Furthermore, assays can be preformed to determine optimal pH, as well. From Dutta’s, and his partners, experiment it shows that there is a range where the Heliodiaptomus viduus’s lactase shows the most activity, which is between 5.0 and 6.0
1972 fluid mosaic model. Lipids are commonly recognized as fats, oils, wax, etc. There are three
The Effect of Temperature on an Enzyme's Ability to Break Down Fat Aim: To investigate the effect of temperature on an enzyme’s (lipase) ability to break down fat. Hypothesis: The graph below shows the rate increasing as the enzymes get closer to their optimum temperature (around 35 degrees Celsius) from room temperature. The enzyme particles are moving quicker because the temperature increases so more collisions and reactions occur between the enzymes and the substrate molecules. After this the graph shows the rate decreasing as the enzymes are past their optimum temperature (higher than). They are getting exposed to temperatures that are too hot and so the proteins are being destroyed.
Kinetics of Ester Hydrolysis Catalyzed By Imidazole Experiment 3. Ban He Lab Partner: Colton Kincy TA: Ally Fairman September 19, 2014. Abstract: The purpose of the experiment was to study the kinetics of the hydrolysis of ester, p-nitrophenyl acetate (NPA) that is catalyzed by the buffer imidazole (Im).
In this investigation, the concentration of enzyme will be inversely proportional to the time taken for starch to be digested, until at a certain point where it will level out. It will level out because, all the substrates would have been used up, therefore there will be no more substrates for the enzymes to work on. In effect, the concentration of the substrate will act as a limiting factor. However, enzyme concentration will be directly proportional to the rate of reaction.
Investigating the Effect of Substrate Concentration on Catalase Reaction. Planning -Aim : The aim of the experiment is to examine how the concentration of the substrate (Hydrogen Peroxide, H2O2) affects the rate of reaction. the enzyme (catalase).
According to the graph on amylase activity at various enzyme concentration (graph 1), the increase of enzyme dilution results in a slower decrease of amylose percentage. Looking at the graph, the amylose percentage decreases at a fast rate with the undiluted enzyme. However, the enzyme dilution with a concentration of 1:3 decreased at a slow rate over time. Additionally, the higher the enzyme dilution, the higher the amylose percentage. For example, in the graph it can be seen that the enzyme dilution with a 1:9 concentration increased over time. However, there is a drastic increase after four minutes, but this is most likely a result of the error that was encountered during the experiment. The undiluted enzyme and the enzyme dilution had a low amylose percentage because there was high enzyme activity. Also, there was an increase in amylose percentage with the enzyme dilution with a 1: 9 concentrations because there was low enzyme activity.
at a volume of 4cm3. The preliminary work also proved to me that my basic method worked without any setbacks that may affect my results. Variables:.. The variables involved in the rate of reaction between amylase and starch are. The volume of amylase The volume of starch
Investigating the Effect of Enzyme Concentration on the Hydrolysis of Starch with Amylase Aim: Investigate the effect of enzyme concentration on the rate of an enzyme-controlled reaction. Using amylase and starch as my example. Introduction: I am investigating the effect of the concentration of the enzyme, amylase on the time taken for the enzyme to fully breakdown the substrate, starch to a sugar solution. The varied variable will be the concentration and all other variables are going to be fixed. The different concentrations will be: 0.5% 0.75% 1.0% 1.5% 2% An enzyme is a class of protein, which acts as a biological catalyst to speed up the rate of reaction with its substrates.
Conclusions: There is a pattern on the graph, and data table, which shows that as the concentration of the sucrose solution increases, the potato's percentage change in mass decreases.
The Effect of pH on Enzyme Activity. pH is a measure of the concentration of hydrogen ions in a solution. The higher the hydrogen ion concentration, the lower the pH. Most enzymes function efficiently over a narrow pH range. A change in pH above or below this range reduces the rate of enzyme reaction. considerably.