Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Enzymes and their importance
Importance of enzymes essay AQA
Importance of enzymes essay AQA
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Section 1: Introduction
Enzymes are proteins that are used to accelerate bio chemical reactions. Enzymes can only react with what is called a substrate. This is because the enzyme has a specific working property, such as having a distinct shape that only allows a perfect fit of a substrate. This substrate locks itself to the enzyme and produces a product.
Lactase is an enzyme that breaks down lactose, a milk disaccharide of galactose and glucose. Lactase can only be found inside the inner walls of the small intestine. Some people stop making lactase after a certain age, the person then becomes lactose intolerant. Lactose intolerant is when a person is unable to break down the sugar molecules of milk, with symptoms that include bloating, cramps, and diarrhea.
The purpose of the experiment is to test the specificity of the enzyme lactase. To test the specificity we used lactose and sucrose and checked for glucose in the solution. The next procedure in our experiment is to test for pH and environmental factors and their effects on lactase. We then tested lactase with lactose in contrasting environments and temperatures. The prediction made for specificity was that lactase was only specific to lactose. We also concluded that sucrose and lactose as well as sucrose and water solution would be the highest concentration for glucose.
For the second experiment we predicted that pH 7 would be optimal for lactase function. For the third experiment we predicted that 25°C with milk and lactase would contain the highest glucose concentration, this is because they are close to the natural environment of the lactase in which enzymes function.
Section 2: Materials and Methods
A. Lactase Enzyme Specificity:
The materials used for this lab includes...
... middle of paper ...
...is gives them symptoms such as diarrhea or bloating.
For future experiments we can possibly try and test the levels of lactase with the pH rank from 10-14, doing this we can see if there is any significant difference. Such as having a higher base resulting in a higher concentration in glucose. Or predict if the only pH that works best would be the pH 10 that we used. It would also be interesting to test or prove that there are enzymes that don’t work as well as others or if there can be a difference in the substrate.
Section 5: References
Role of Enzymes in Biochemical Reactions. (Ophardt 2003). Retrieved November 3, 2013 from virtual chembook online www.elmhurst.edu/~chm/vchembook/570enzymes.html
A. Zebboudj, personal communications from Inquiry into life (13th ed.), October 16, 2013
Mader, S. S. (2012). Inquiry into life (13th ed.). New York: McGraw-Hill
These labels indicated the lactose solution that was be placed into the mini-microfuge tubes. The varying lactose ph solutions were obtained. The four miniature pipets were then used, (one per solution,) to add 1mL of the solution to the corresponding mini-microfuge tubes. When this step is completed there were two mini-microfuge tubes that matched the paper towel. Then, once all of the solutions contained their respective lactose solutions, 0.5mL of the lactase enzyme suspension was added to the first mini-microfuge tube labeled LPH4 on the paper towel, and 4 on the microfuge tube. As soon as the lactase enzyme suspension was added to the mini-microfuge tube, the timer was started in stopwatch mode (increasing.) When the timer reached 7 minutes and 30 seconds, the glucose test strip was dipped into the created solution in the mini-microfuge tube for 2 seconds (keep timer going, as the timer is also needed for the glucose strip. Once the two seconds had elapsed, the test strip was immediately removed, and the excess solution was wiped gently on the side of the mini-microfuge tube. The timer was continued for 30 addition seconds. Once the timer reached 7:32 (the extra two seconds accounting for the glucose dip), the test strip was then compared the glucose test strip color chart that is found on the side of the glucose test strip
For example, incubating the samples at different temperatures would create more data points to establish an optimal temperature. From the results in the experiment in this study, it is known as temperature increases, enzymatic activity increase, and vise versa. However, what can not be observed is at what point does the increase in temperature begin to denature the enzyme, above 60°C. Furthermore, assays can be preformed to determine optimal pH, as well. From Dutta’s, and his partners, experiment it shows that there is a range where the Heliodiaptomus viduus’s lactase shows the most activity, which is between 5.0 and 6.0
While the tube for specimen Cb turned a tannish white in the lower half of the tube while the top stayed the lavender inoculated tube color. Do to this evidence I determined that both specimens Ca and Cb cannot use the process Casein hydrolysis or Casein coagulation due to lack of soft or firm curds in both tubes. Since there was no casein curds formed, I concluded that specimens Ca and Cb also cannot perform the process of proteolysis. My conclusion is supported by the fact that there was no clearing of the medium. I have also determine that neither of my organisms can make the enzymes rennin, proteolytic or even proteases. I know my specimens cannot produce proteases due to the fact that there was no blue coloring in the tubes which means that the byproduct Ammonia was not produced to increase the pH. Since neither of my specimens can make these enzymes, I concluded that my specimens cannot break down lactose or casein. Although I did learn that specimen Cb can reduce litmus due to the evidence that the lower part of the tube turned a tannish white color with a purple ring at the top. This color change from a purple to a white means that the litmus was reduced turning it clear and leaving the white of the milk to show. Finally I know that specimen Ca cannot reduce litmus due to the fact that the tube had no change in
Lactase is an enzyme found in the digestive system. It is essential to the complete digestion of sugar in whole milk and milk products. Lactase specifically breaks down lactose, a complex sugar. Lactase cannot be absorbed by the body unless it is broken down by lactase into glucose and galactose. According to webMD, “Lacking lactase in their intestines, a person consuming dairy products may experience the symptoms of lactose intolerance…Abdominal cramping, flatulence (gas) and diarrhea can occur when a lactose intolerant person consumes milk products.” ("Lactase Enzyme oral : Uses, Side Effects, Interactions, Pictures, Warnings & Dosing - WebMD", n.d.) Lactase is not recommended for use in CHILDREN younger than 4 years of age. Safety and effectiveness in this age group have not been confirmed. (Kluwer, 2014)
LI was first recognized in the 1960s when researchers found black children responding unfavorably to milk in their diets (Harrison 812). Research led to the discovery that lactose, the major sugar in milk and related dairy products, was undigestible in some people because they were missing the enzyme lactase. Lactase breaks down lactose into its component monosaccharide sugars, glucose and galactose. In people missing lactase, lactose passes undigested through the small intestine. In some people, the undigested lactose passes through the remainder of their systems with no ill effects. In others, however, the undigested lactose becomes viscous and ferments in the colon (Englert and Guillory 903). The thickness of the liquid and the fermentation cause painful cramping, gas and sometimes diarrhea. Besides not being able to digest lactose, these people suffer from malabsorption, which causes them to receive little or none of milk's nutrients (Houts 110).1
Purpose: The purpose of this lab is to explore the different factors which effect enzyme activity and the rates of reaction, such as particle size and temperature.
The independent variable for this experiment is the enzyme concentration, and the range chosen is from 1% to 5% with the measurements of 1, 2, 4, and 5%. The dependant variable to be measured is the absorbance of the absorbance of the solution within a colorimeter, Equipments: Iodine solution: used to test for present of starch - Amylase solution - 1% starch solution - 1 pipette - 3 syringes - 8 test tubes – Stop clock - Water bath at 37oc - Distilled water- colorimeter Method: = == ==
Investigating the Effect of Substrate Concentration on Catalase Reaction. Planning -Aim : The aim of the experiment is to examine how the concentration of the substrate (Hydrogen Peroxide, H2O2) affects the rate of reaction. the enzyme (catalase).
In this experiment as a whole, there were three individual experiments conducted, each with an individualized hypothesis. For the effect of temperature on enzyme activity, catalase activity will be decreased when catalase is exposed to temperatures greater than or less approximately 23 degrees Celsius. For the effect of enzyme concentration on enzyme activity, a concentration of greater or less than approximately 50% enzymes, the less active catalase will be. Lastly, the more the pH buffer deviates from a basic pH of 7, the less active catalase will be.
Enzymes have the ability to act on a small group of chemically similar substances. Enzymes are very specific, in the sense that each enzyme is limited to interact with only one set of reactants; the reactants are referred to as substrates. Substrates of an enzyme are the chemicals altered by enzyme-catalysed reactions. The extreme specific nature of enzymes are because of the complicated three-dimensional shape, which is due to the particular way the amino acid chain of proteins folds.
Lactase, a type of enzyme usually found in the small intestine, breaks down lactose into sugars such as galactose and glucose. People that are lactose intolerant cannot consume anything containing dairy because they cannot break down lactose, a sugar found in milk. Those that are lactose intolerant lack the enzyme lactase. Without lactase, the body does not have the ability to break down lactose, which leads to a person having an upset stomach and diarrhea. Adults are more likely to be lactose intolerant than children because of the metabolic change in the body (Dritsas). The lack of lactase that people have can be compensated by taking pills to help break down lactose that is consumed; with the help of a lactase pill the body can now absorb galactase and glucose properly (McCracken, 481).
A selective advantage of not producing lactase as an adult is simply saving energy for the body to use elsewhere. Young children need dairy products which contain lactose because it helps their bodies grow by providing healthy nutrients like fats, proteins, vitamins and it also helps make their bones stronger. As children grow older in to young adults their bodies are less inclined to need the large amount of nutrients the dairy products provide. Since the body no longer feels the lactose is a helpful source, the body slowly decreases the amount of lactase enzymes being produced. Typically a young adult can still comfortably have a glass of milk but the body progressively decreases the amount of lactase enzymes being produced. These lactase enzymes are what break down lactose and simple sugars. Once the body can no longer do this, a person will struggle digesting dairy products. This is a selective advantage because it helps the body save energy, instead of wasting it on producing these lactase enzymes. The body does not need lactose anymore so other...
= == In relative terms enzymes are biological catalysts; control the rate of chemical reaction, different temperatures and pH’s affect their optimum rate of reaction in living organisms. In detail; enzymes are globular proteins, which catalyse chemical reactions in living organisms, they are produced by living cells – each cell has hundreds of enzymes. Cells can never run out of enzymes as they or used up in a reaction.
The mixture for that table’s flask was 15 mL Sucrose, 10 mL of RO water and 10 mL of Yeast, which the flask was then placed in an incubator at 37 degrees Celsius. In my hypothesis for comparison #4 the measurements would go up again with every 15 min. intervals because of the high tempeture and also be higher that then Controlled Table’s measurements. Hypothesis was right for the first part but was wrong for the second part of the comparison, the measurements did increase in the table’s personal flask but the measurements did not get higher than the Controlled Table’s measurements, see chart below. In conclusion, I feel that the substitution of glucose for sucrose made the enzymes work just as hard as the Controlled Table’s flask but just not as much because sucrose was too strong for the enzymes to
Without enzymes, reactions wouldn’t occur and living organisms would die. For instance, the enzyme in the stomach breaks down large molecules to smaller molecules to absorb nutrition faster. Researchers experimented with enzyme activity with a potato extract. Researchers will test enzyme activity by increasing and decreasing pH levels, lowering and increasing temperature, and substrate concentration effects. In the first experiment, researchers hypothesized whether different pH levels would change how much Benzoquinone are created and how will the enzymes function in neutral pH levels than higher and lower levels. Researchers used potato extract and different levels of pH to test their hypothesis. In addition, researchers questioned at what temperature does the greatest amount of potato extract enzyme activity take place in. Researchers then hypothesized that the results would indicate the greatest amount of potato enzyme activity level will take place in room temperature. In this experiment, researchers used potato extract and different temperature levels to test the hypothesis. Moreover, researchers wanted to test the color intensity scale and how specific catechol oxidase is for catechol. In this experiment, researchers used dH2O, catechol solution, hydroquinone, and potato extract. Lastly, researchers tested the substrate concentration and how it has an effect on enzyme activity. In this experiment researchers used different measurements of catechol and 1cm of potato extract. Researchers hypothesized that the increase o substrate would level out the enzyme activity