The Different Roles of Macromolecules in Biology

Length: 1376 words (3.9 double-spaced pages)
Rating: Excellent
Open Document
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Text Preview

More ↓

Continue reading...

Open Document

The Different Roles of Macromolecules in Biology

There are four types of macromolecules that I am going to describe:
Proteins, carbohydrates, lipids and nucleic acid. I will also describe
the functions and why they are important in our bodies.


Proteins are polymers of amino acids that are joined head-to-tail in a
long chain that is then folded into a three-dimensional structure
unique to each type of protein. The covalent linkage between two
adjacent amino acids in a protein (or polypeptide) chain is called a
peptide bond.

There are twenty amino acids that make up proteins. Each amino acid
has a typical generic structure as depicted in the diagram 1, the only
variance in each amino acid lies in a unique side chain (R group).

Diagram 1: [IMAGE]

Most of the amino acids have a carboxyl group and an amino group as
shown above. At physiological pH the natural amino acids exist as
zwitterions, with a negatively charged carboxyl group and a positively
charged amino group. The side chains vary greatly in their complexity
and properties. Amino acids are classified by the chemical nature of
their side chains. Five of the 20 amino acids have side chains that
can form ions in solution and thereby can carry a charge. The others
are uncharged: some are polar and hydrophilic and some are non-polar
and hydrophobic.

Proteins are not linear molecules as suggested when we write out a
"string" of amino acid sequence, -Lys-Ala-Pro-Met-Gly- etc., for
example. Rather, this "string" folds into an intricate
three-dimensional structure that is unique to each protein. It is this
three-dimensional structure that allows proteins to function. Thus in
order to understand the details of protein function, one must
understand protein structure.

Protein structure is broken down into four levels. Primary structure
refers to the "linear" sequence of amino acids. Proteins are large
polypeptides of defined amino acid sequence (diagram 2). The sequence
of amino acids in each protein is determined by the gene that encodes

How to Cite this Page

MLA Citation:
"The Different Roles of Macromolecules in Biology." 25 Sep 2017
Title Length Color Rating  
What Is the Role of a Macromolecule? Essay - What is the role of Macromolecules. Macromolecules have a major role in everyday life, we might not notice this because we don't exactly know what we use them for and why they are so important to us, mainly because we can see them therefore we are not aware that they exist. The term macromolecules is sometimes used to refer to aggregates of two or more macromolecules held together by intermolecular forces rather then by chemical bonds. Another common macromolecule property that does not characterize smaller molecules is the need for assistance in dissolving into solution....   [tags: Biology] 1239 words
(3.5 pages)
Strong Essays [preview]
Why are most Enzymes made of Proteins and not other Macromolecules? Essay - Enzymes are biological catalysts that increase the rate of chemical reactions within the cells without any change at the end (Palmer, 1991). In the absence of enzymes, most biological process might not occur. The purpose of an enzyme is to allow the cell carry out its functions in time. As the structure of most biological molecules play a major role in their function, the three dimensional structure of an enzyme is responsible for its catalytic activities. Therefore, enzymes are proteins made of amino acids....   [tags: Biology]
:: 10 Works Cited
1625 words
(4.6 pages)
Powerful Essays [preview]
Essay on What is Molecular Biology? - MOLECULAR BIOLOGY INTRODUCTION AND BACKGROUND INFORMATION Molecular biology is to characterize the structure, function and relationships between two types of macromolecules, DNA and proteins. This relatively limited definition will suffice to allow us to establish a date for the so-called "molecular revolution", or at least to establish a chronology of its most fundamental developments (Walker, 2009) .At the heart of this definition is the idea of the gene, this concept dates back to the decade of the 1860's....   [tags: macromolecules, DNA, proteins]
:: 8 Works Cited
1731 words
(4.9 pages)
Powerful Essays [preview]
Evolutionary Developmental Biology Essay - Evolutionary developmental biology (evo-devo) was instituted in the early 1980s as a distinctive field of study to characterise the new synthesis of evolution hypothesis (Müller, 2007). Evo-devo is regarded as a new rule in evolutionary biology and a complement to neo-Darwinian theories. It has formed from the combination of molecular developmental biology and evolutionary molecular genetics; their integration has helped greatly to understand both of these fields. Evo-devo as a discipline has been exploring the role of the process of individual development and the changes in evolutionary phenotype, meaning the developmental procedure by which single-celled zygotes grow to be multicellular or...   [tags: Biology ] 2219 words
(6.3 pages)
Strong Essays [preview]
Gender Roles: Biology or Culture Essay - Brettell and Sargent open their book Gender in Cross Cultural Perspectives with a question: What is the role of biology in human behaviour (Brettell and Sargent, 2009, 1). Ward and Edelstein approach this question using cross-species analysis. They compare chimpanzee biology and behaviour to humans. There are four reasons that Ward uses comparisons to chimpanzees. First, because chimpanzees represent our closest genetic relative and second, the social activities and behaviours may be reflective of human ancestors....   [tags: Gender in Cross Cultural Perspectives]
:: 6 Works Cited
1301 words
(3.7 pages)
Strong Essays [preview]
Evolutionary Development Biology Essay - Evolutionary developmental biology (evo-devo) has been instituted in the early 1980s as a distinctive field of study to characterize the new synthesis of evolution hypothesis (Müller, 2007). Evo-devo has been regarded as a new rule in evolutionary biology and complement to the neo- Darwinian theories. It has formed from the molecular developmental biology and evolutionary molecular genetics that their integration helps to greatly understand both of them into the recent evo-devo. Evo-devo as discipline has been explored the role of the process of individual development and the evolutionary phenotype changes that is mean the developmental procedure by which single-celled zygotes grow to be mul...   [tags: Biology, Embryology] 2144 words
(6.1 pages)
Strong Essays [preview]
Essay about Wildlife Conservation and Biology - There are 6.5 million species of land mammals. Wildlife biologists get the privilege of studying and spending time with these animals as their everyday life. I should be a wildlife biologist so I can study land mammals. Wildlife biology is a field of biology in which land animals are studied. It deals with all animals with backbones and studies individual species of wildlife, their habitats, and surrounding ecosystems (Fitzgerald). It also studies how animals may interact with their ecosystem....   [tags: Land Mammals, Large Animals, Animals, Biology]
:: 7 Works Cited
1579 words
(4.5 pages)
Powerful Essays [preview]
Beauty, Biology, and Society Essay - Beauty, Biology, and Society What is beauty. How do human beings decide who is attractive and who is not. Society is full of messages telling us what is beautiful, but what are those definitions based on. Do we consciously decide whom we are attracted to, or is biology somehow involved. The issue of beauty and how we define it has been studied for centuries. Scholars from all fields of study have searched for the "formula" for beauty. Darwin in his book The Descent of Man wrote, "It is certainly not true that there is in the mind of man any universal standard of beauty with respect to the human body....   [tags: Biology Essays Research Papers]
:: 9 Works Cited
1541 words
(4.4 pages)
Powerful Essays [preview]
Practical Applications of Evolutionary Biology Essay - Charles Darwin and Alfred Wallace's concept of natural selection and descent with modification helped shape the theory of evolution which holds as much weight as the theory of relativity per se. Evolutionary biology is the science devoted to understanding how populations change through time in response to modifications of their environment and how new species come into being by studying adaptation and diversity (Freeman and Herron 2004). Evolutionary biology has proved that all organisms have evolved from a common ancestor over the last 3.5 billion years....   [tags: Biology] 1498 words
(4.3 pages)
Powerful Essays [preview]
Biology Essay - Biology is the science of living systems. It is inherently interdisciplinary, requiring knowledge of the physical sciences and mathematics, although specialities may be oriented toward a group of organisms or a level of organization. BOTANY is concerned with plant life, ZOOLOGY with animal life, algology with ALGAE, MYCOLOGY with fungi, MICROBIOLOGY with microorganisms such as protozoa and bacteria, CYTOLOGY with CELLS, and so on. All biological specialties, however, are concerned with life and its characteristics....   [tags: Biology]
:: 4 Works Cited
2806 words
(8 pages)
Strong Essays [preview]

Related Searches

it. The gene is transcribed into a messenger RNA (mRNA) and the mRNA
is translated into a protein by the ribosome.

1. Primary structure is sometimes called the "covalent structure" of
proteins because, with the exception of disulfide bonds (see
below), all of the covalent bonding within proteins defines the
primary structure. In contrast, the higher orders of protein
structure (i.e. secondary, tertiary and quartenary) involve mainly
non-covalent interactions.


Diagram 2:

2. Secondary structure is the "local" ordered structure brought
about via hydrogen bonding mainly within the peptide backbone. The
most common secondary structure elements in proteins are the alpha
(ï¡) helix and the beta (ï¢) sheet.

3. Tertiary structure is the "global" folding of a single
polypeptide chain. A major driving force in determining the
tertiary structure of globular proteins is the hydrophobic effect.
The polypeptide chain folds such that the side chains of the
non-polar amino acids are "hidden" within the structure and the
side chains of the polar residues are exposed on the outer
surface. Hydrogen bonding involving groups from both the peptide
backbone and the side chains are important in stabilizing tertiary
structure. The teriary structure of some proteins is stabilized by
disulfide bonds between cysteine residues.

4. Quartenary structure involves the association of two or more
polypeptide chains into a multi-subunit structure. Quartenary
structure is the stable association of multiple polypeptide chains
resulting in an active unit. Not all proteins exhibit quartenary
structure. Usually, each polypeptide within a multisubunit protein
folds more-or-less independently into a stable tertiary structure
and the folded subunits then associate with each other to form the
final structure. Quartenary structures are stabilised mainly by
non-covalent interactions; all types of non-colvalent
interactions: hydrogen bonding, van der Walls interactions and
ionic bonding, are involved in the interactions between subunits.
In rare instances, disulfide bonds between cysteine residues in
different polypeptide chains are involved in stabilizing
quartenary structure.

Proteins are associated with many functions in order for a cell to
sustain its life. The following is a list of functions that are
carried out by proteins:

* Proteins are important structural components in cells: actin,
myosin and tubulin are proteins found in the cytoskeleton.

* Tubulin is a spherical protein which is built up into long threads
called microtubules. Microtubules help form the spindle apparatus
used to separate chromosomes during nuclear division. Microtubules
are found in plant and animal cells.

* Proteins can act as receptors on cell membranes.

* Haemoglobin is an important transport protein responsible for
carrying oxygen in red blood cells.

* Plasma proteins such as albumin are important as buffers in the

* Some proteins have hormone action, e.g., insulin.

* Proteins are rarely used in animals as food stores, the exception
being the large bulk of albumen which is used to provide raw
material for the growth and development of embryos.

* Some plants, particularly legumes, use proteins are a food store
in their seed (peas, beans).

* Some proteins have catalytic properties, these are termed enzymes.
Enzymes are imperative for many chemical reactions in cells.


We now focus on a second family of macromolecules that are essential
in the make up of cells, carbohydrates. Carbohydrates contain only
three elements: carbon hydrogen and oxygen.

The simplest carbohydrates are sugars. Sugars are classified into
monosaccharides (these contain only one sugar molecule as shown in
diagram 3),


Diagram 3

Disaccharides (which contain two sugar molecules) complex
Carbohydrates and so on. Disaccharides consist of two monosaccharides
linked together by a dehydration synthesis (a chemical reaction that
is associated with the release of water molecules) Diagram 4. Sucrose
is common disaccharide which functions as a transport sugar in plants.
Lactose is another disaccharides which is commonly called milk sugar
(energy, constituent of nucleotides).


Diagram 4

This diagram shows the synthesis of sucrose from glucose and fructose
via a dehydration synthesis. Notice that a hydrogen is removed from
the glucose and a hydroxyl (OH) from the fructose leaving an oxygen to
link the two molecules together.

A polysaccharide is a large molecule containing many sugar molecules.
Sugars tend to be sweet and easily soluble in water. Polysaccharides,
such as starch, are not sweet and are usually insoluble in water.


Lipids are comprised of just carbon, hydrogen and oxygen but not in
the same proportions as carbohydrates. There are various types of
lipids and they are categorised according to their physical

Oils - liquid at room temperature.

Fats - liquid or solid at room temperature.

Waxes - solids at room temperature

The human body contains all three types of lipids. Most lipids are
stored in the body as triglycerides. A triglyceride molecule contains
glycerol and three fatty acid: Glycerol, Fatty acids and Phosphate

Nucleic acids

Nucleic acids include deoxyribonucleic acid and ribonucleic acid

Nucleic acids are employed in cells as both polymers and as monomers

Polymers of nucleic acids are the stuff of genes


Nucleic acid monomers are called nucleotides

Nucleotides consist of three parts: a sugar (deoxyribose in DNA,
ribose in RNA), a phosphate group attached to the sugar, and a nitrogenous
base, also attached to the sugar

This is the ribonucleic acid known as adenosine mono-phosphate (AMP)

As you can see above, the carbon that the phosphate group is attached
to; this carbon is called the 5' (five-prime) carbon

Note the carbon the nitrogenous base is attached to (in this case
adenine); this carbon is called the 1' (one-prime) carbon

Also that in ribose the 2' carbon is has a hydroxyl group attached to
it whereas in the deoxyribose the 2' carbon is bound instead by two

Ribonucleic acid (RNA)

Two distinct types of nucleic acids are found in cells, ribonucleic
acid (or RNA) and deoxyribonucleic acid (or DNA. Ribonucleic acid is
distinct in that its backbone sugar is ribose rather than deoxyribose.
Ribonucleic acid additional employs a different nitrogenous base than
DNA. Finally, RNA is employed for different functions in the cell than
DNA. RNA serves roles particularly in the conversion of genotype
information to phenotype information.

Deoxyribonucleic acid (DNA)

The backbone sugar of deoxyribonucleic acid, or DNA, called
deoxyribose, possesses one less hydroxyl group than the backbone sugar
of RNA, called ribose (this hydroxyl group is missing in
deoxyribose-hence, by the way, the name-from the 2' carbon)

DNA is the molecule of chromosomes and genotype in most organisms

Functions of the four given macromolecules

Proteins: catalysis; transport support, growth and repair, nutrients,
immunity and coordination

Carbohydrates: energy storage, cell walls and structural support

Lipids: storage, high-energy store, hormone production

Nucleic acids: Encodes genes and needed for gene expression


From the above information you can see that macromolecules play a big
part in our life. The Interactions of Macromolecules In living cells
certain macromolecules may be covalently bonded to one another. Some
proteins are capable of recognizing and affecting other
macromolecules, such as proteins, carbohydrates, lipids, and DNA.


Raven and Johnstone (2004) Biology, McGraw-Hill

Return to