Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
photosynthesis experiment evaluation
photosynthesis experiment evaluation
factors that affect photosynthesis lab
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: photosynthesis experiment evaluation
Biology Coursework ¡V Does The Light Intensity Affect the Rate of Photosynthesis The Investigation In this experiment I will investigate the affect in which the light intensity will have on a plants photosynthesis process. This will be done by measuring the bubbles of oxygen and having a bulb for the light intensity variable. Variables The input variable which will be used in this investigation will be the light intensity (this will be a 100Watt bulb being moved closer and further away from the plant). The outcome variable which will change as a result of this experiment will be the amount of oxygen made in the experiment due to the amount of light intensity increases (causing the plant to photosynthesise more). Prediction I predict that as the input variable, the light intensity increases (the light moved towards the plant) the outcome variable, the amount of oxygen, produced from photosynthesis will be larger. Plants can absorb and use light energy because they have a green pigment, chlorophyll, contained in the chloroplasts in some of their cells. Chlorophyll allows the energy in sunlight to drive chemical reactions. Chloroplasts act as a energy transducers, converting light energy into chemical energy. So as the plant has more light the chlorophyll inside the chloroplasts can react faster absorbing in more light for food and energy. The equation for photosynthesis can help to predict the outcome of the investigation. Light Energy Carbon Dioxide + Water --------------„³ Glucose + Oxygen Chlorophyll This shows that there could be three variables in this experiment, carbon dioxide, water and light energy. So in our case the variable light energy (light intensity) will be used. The equation also shows that if there is more light energy then more glucose and oxygen will be produced. I also predict that as the light is moved closer to the plant there will be more bubbles (oxygen) produced due to the increase of photosynthesis speed explained above. So in conclusion I predict that the more light intensity there is on the plant the faster the rate of photosynthesis there will be. Fair Testing The fair testing will be carefully checked so the results do not come out to be void. The light intensity will be changed for it is the only variable used in the experiment. Though the temperature, watt of the bulb, amount of water, size of the plant and posit... ... middle of paper ... ... in the chloroplasts in some of their cells. Chlorophyll allows the energy in sunlight to drive chemical reactions. Chloroplasts act as energy transducers, converting light energy into chemical energy. So as the plant has more light the chlorophyll inside the chloroplasts can react faster absorbing in more light for food and energy.¡¨ So this shows my prediction was correct for in my experiment and shown in my result table and graph the more light intensity there is on a plant the higher the rate of my photosynthesis will be. My prediction is very close to what I said the results will be so my prediction was correct and has been proven to be correct in my result table, graph and now explained again in my conclusion. In conclusion the experiment was carried out and had great success proving my prediction to be correct and enabling solid and valid results which were able to be put in a graph. I believe my prediction could have been more accurate or more backed up if I had made a quantitative prediction. Though what I believed would happen did happen during the experiment which helped to understand the graph and the results which led me to be able to write a thorough report on them.
The majority of life on Earth depends on photosynthesis for food and oxygen. Photosynthesis is the conversion of carbon dioxide and water into carbohydrates and oxygen using the sun’s light energy (Campbell, 1996). This process consists of two parts the light reactions and the Calvin cycle (Campbell, 1996). During the light reactions is when the sun’s energy is converted into ATP and NADPH, which is chemical energy (Campbell, 1996). This process occurs in the chloroplasts of plants cell. Within the chloroplasts are multiple photosynthetic pigments that absorb light from the sun (Campbell, 1996).
DPIP will be used to determine the rate at which the cholorplasts are being reduced. The spectrophotometer will establish the wavelength of light that penitrats the chloroplast solution in turn determining the amount of electrons reduced. In the dark reactions, the spectrophotometer will measure the amount of light passing through a darker solution of DPIP and chloroplasts. In the light reactions, the lighter solution, caused by reduction of the chloroplasts, will allow a larger amount of light to pass through to the photocell of the spectrophotometer. Thus, the spectrophotometer will prove wheter the light or dark reactions affect the rate of photosynthesis in chloroplasts. We will also be using a reference solution made of water, phosphate buffer, and active chloroplasts. The purpose of this solution will be used to set the transmittance level for the experiment. The control solution, which is different than the reference solution, is comprised of water, phosphate buffer, and DPIP. It will be used to prove that the three element of the solution do affect the results- it is strictly the chloroplasts that are subjected to the light/dark conditions.
The high rate of absorbance change in blue light in the chloroplast samples (Figure 1) can be attributed to its short wavelength that provides a high potential energy. A high rate of absorbance change is also observed in red light in the chloroplast samples (Figure 1), which can be accredited to the reaction centre’s preference for a wavelength of 680nm and 700nm – both of which fall within the red light range (Halliwell, 1984). Green light showed low rates of photosynthetic activity and difference in change in absorbance at 605nm in the chloroplast samples (Figure 1) as it is only weakly absorbed by pigments, and is mostly reflected. The percentage of absorption of blue or red light by plant leaves is about 90%, in comparison to the 70–80% absorbance in green light (Terashima et al, 2009). Yet despite the high absorbance and photosynthetic activity of blue light, hypocotyl elongation was suppressed and biomass production was induced (Johkan et al, 2012), which is caused by the absorption of blue light by the accessory pigments that do not transfer the absorbed energy efficiently to the chlorophyll, instead direction some of the energy to other pathways. On the other hand, all of the red light is absorbed by chlorophyll and used efficiently, thus inducing hypocotyl elongation and the expansion in leaf area (Johkan et al, 2012).
The experiment was conducted using carbon dioxide to see how it affected the rate of photosynthesis in spinach leaves. Carbon dioxide should increase the rate of photosynthesis because there will be more carbon dioxide, a reactant in the photosynthesis formula.
The Effect of Light Intensity on the Rate of Oxygen Production in a Plant While Photosynthesis is Taking Place
Photosynthesis is the conversion of carbon dioxide, water, and light into chemical energy through a series of reactions, and can occur in plants both on land, and in the water (Ensminger PA 2004). However, a variety of things can affect photosynthesis; water levels, temperature, and light availability are just some of the many that can cause fluctuation in the photosynthetic reaction of plants (Carr et al. 1997). This lab was a result of this observation. With so many factors affecting photosynthesis, interest was expressed about whether water type could affect it as well. This could be important for several reasons. For example, as more and more carbon dioxide gets absorbed into the water on Earth, figuring out which water source provides a better habitat for aquatic plants such as Elodea could lead to further understanding global
How does varying intensity of light impact the rate of cell division of Allium fistulosum? My independent variable will be the amount of light the onions are exposed to ( 0 watts, 40 watts, 100 watts). My dependent variable will be the mitotic index of samples taken from each of the germinated onions. This will be calculated using root tip squashes.
Photosynthesis is a highly important process that takes place in plants primarily because without it life on this planet would not be able to function properly. “It produces the oxygen we breathe and the food we eat” (Harbinson). Without photosynthesis, life would not be able to sustain itself and our planet would be a barren wasteland. The Photosynthetic process converts light energy into chemical energy. The energy that’s created through the process then later is used to help fuel the organism’s activities. This process can be significantly more complicated than it sounds with different stages and many steps.
... photosynthesize. Without the vital factors of; carbon dioxide, water, sunlight and chlorophyll, plants would not be able to photosynthesize and therefore would not be able to produce their own food and thus would die. Without plants there would be no life on earth as basically all animals are directly or indirectly reliant on plants for their food as they are not able to produce their own food like plants. It is therefore crucial that plants get all these factors that they need in order to photosynthesize because, they are so important for the well being of the whole world, not only for food but also giving us the oxygen we need to breathe and stay alive, as they let off oxygen as a bi-product. To further improve this experiment one could test how the amount of carbon dioxide influences the rate of photosynthesis and therefore the speed at which a plant can grow.
Photosynthesis in simpler turns is the ability of a live plant to carry on its chemical process by the use of light energy. Photosynthesis can not take place when there is absolutely no light, instead it stores the light it captures during the day, and uses it when needed. Photosynthesis can take place in land plants and aquarian plants such as algae. There are many factors that influence the ability of a plant to go through photosynthesis, such as light, the color of light and amount of water and or light.
To continue the experiment further I can use a different source of light to test the intensity of light. For the food coloring experiment, I could use a different food color such as yellow or orange to test.
Photosynthesis will occur at a faster rate when the plant is exposed to the sun, than when it is not exposed to sunlight.
Telkamp, M. (2016, March 28). Types of Grow Lights for Indoor Plants. Retrieved March 27,
Increases in temperature can decrease the efficiency of photosynthesis; however the extent of this impact may be determine on the species' dependency on light.
Light quantity refers to the intensity or concentration of sunlight and varies with the season of the year. The maximum is present in the summer and the minimum in winter. The more sunlight a plant receives (up to a point), the better capacity it has to produce plant food through photosynthesis. As the sunlight quantity decreases the photosynthetic process decreases. Light quantity can be decreased in a garden or greenhouse by using shade-cloth or shading paint above the plants. It can be increased by surrounding plants with white or reflective material or supplemental lights.